Effect of Nanocalcium Carbonate Content on the Properties of PLA Nanocomposites

Authors

  • Ankit Pundir Department of Plastics Engineering, Central Institute of Plastics Engineering and Technology, Patia, Bhubaneswar-751024, India
  • P. Santhana Gopala Krishnan Department of Plastics Engineering, Central Institute of Plastics Engineering and Technology, Patia, Bhubaneswar-751024, India
  • Sanjay Kumar Nayak Department of Plastics Engineering, Central Institute of Plastics Engineering and Technology, Patia, Bhubaneswar-751024, India and Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Patia, Bhubaneswar-751024, India

DOI:

https://doi.org/10.12974/2311-8717.2017.05.01.4

Keywords:

Poly(lactic acid), nanofiller, mechanical properties, thermal stability.

Abstract

Even though poly(lactic acid) is one of the most promising biodegradable polymers, less hydrophilic, low impact strength and heat resistance limits its applications. The current study was undertaken to overcome these limitations. Poly(lactic acid)-calcium carbonate nanocomposites were prepared by melt blending technique upto 3 wt. % using master batch containing 4 wt. % of nanocalcium carbonate content. Water absorption and density increased with increase in nanofiller content. Tensile and flexural strength and heat deflection temperature increased up to 1 wt. % of nanofiller content and marginally decreased thereafter. Impact strength increased with increase in nanofiller content and was attributed to cavitation at the polymer-particle boundaries. Impact strength increased to about 200% upon addition of 3 wt. % of nanofiller. TEM studies indicated good dispersion of nanofiller at 1 wt. % and agglomeration at 3 wt. % of nanofiller content. Nanocomposites had lower thermal stability than pristine polymer. 

References

Mehta R, Kumar V, Bhunia H and Upadhyay S. Synthesis of poly (lactic acid): a review. J Macromol Sci Polym Rev 2005; 45: 325-49. https://doi.org/10.1080/15321790500304148

Drumright RE, Gruber PR and Henton DE. Polylactic acid technology. Adv Mater 2000; 12: 1841-46. https://doi.org/10.1002/1521-4095(200012)12:23<1841::AIDADMA1841> 3.0.CO;2-E

Garlotta RA. A literature review of poly(lactic acid). J Polym Environ 2001; 9 (2): 63-84. https://doi.org/10.1023/A:1020200822435

Lim LT, Auras R and Rubino M. Processing technologies for poly (lactic acid). Prog Polym Sci 2008; 33: 820-52. https://doi.org/10.1016/j.progpolymsci.2008.05.004

Sodergard A and Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 2002; 27: 1123-63. https://doi.org/10.1016/S0079-6700(02)00012-6

Nampoothiri KM, Nair NR and John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 2010; 101: 8493-8501. https://doi.org/10.1016/j.biortech.2010.05.092

NatureWorks ingeo: Naturally advanced materials. Ingeo Joins European Bio plastics Conference for the Third Edition. http://www.natureworksllc.com/News-and-Events/Press- Releases/2008/10-30-08-EUBioplasticsConf. (September 12, 2016).

Jamshidian M, Tehrany EA, Imran M, Jacquot M and Desobry S. Poly lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 2010; 9: 552-71. https://doi.org/10.1111/j.1541-4337.2010.00126.x

Park JW and Im SS. Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate) J Appl Polym Sci 2002; 86: 647-55. https://doi.org/10.1002/app.10923

Na YH, He Y, Shuai X, Kikkawa Y, Doi Y and Inoue Y. Compatibilization effect of poly(ε-caprolactone)-bpoly( ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/ poly(ε- caprolactone) blends. Biomacromolecules 2002: 1179-86. https://doi.org/10.1021/bm020050r

Hu Y, Hu YS, Topolkaraev V, Hiltner A and Baer E. Crystallization and phase separation in blends of high stereo regular poly(lactide) with poly(ethylene glycol). Polymer 2003; 44: 5681-9. https://doi.org/10.1016/S0032-3861(03)00609-8

Gajria AM, Dave V, Gross RA and McCarthy SP. Miscibility and biodegradability of blends of poly(lactic acid) and Poly(vinyl acetate). Polymer 1996; 37: 437-44. https://doi.org/10.1016/0032-3861(96)82913-2

Ishida S, Nagasaki R, Chino K, Dong T and Inoue Y. Toughening of poly(L-lactide) by melt blending with rubbers. J Appl Polym Sci 2009; 113: 558-66. https://doi.org/10.1002/app.30134

Balakrishnan H, Hassan A, Wahit S and Yussuf AA. Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 2010; 31: 3289-298. https://doi.org/10.1016/j.matdes.2010.02.008

Jiang L, Wolcott MP and Zhang J. Study of biodegradable polylactide / poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 2006; 7:199-207. https://doi.org/10.1021/bm050581q

Kulinski Z, Piorkowska E, Gadzinowska K. Plasticization of poly(L-lactide) with poly(propylene glycol). Biomacromolecules 2006; 7(7): 2128-2135. https://doi.org/10.1021/bm060089m

Martin O and Averous L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 2001; 42: 6209-6219. https://doi.org/10.1016/S0032-3861(01)00086-6

Labrecque LV, Kumar RA, Dave V, Gross RA and McCarthy SP. Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 1997; 66: 1507-13. https://doi.org/10.1002/(SICI)1097- 4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0

Ljungberg N, Andersson T and Wesslen B. Film extrusion and film weld ability of poly(lactic acid) plasticized with triacetin and tributyl citrate. J Appl Polym Sci 2003; 88: 3239-46. https://doi.org/10.1002/app.12106

Ljungberg N and Wesslen B. The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 2002; 86: 1227-34. https://doi.org/10.1002/app.11077

Ljungberg N and Wesslen B. Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 2005; 6: 1789-96. https://doi.org/10.1021/bm050098f

Jacobsen S and Fritz HG. Plasticizing polylactide - the effect of different plasticizers on the mechanical properties. Polym Eng Sci1999; 39: 1303-10. https://doi.org/10.1002/pen.11517

Shibata M, Someya Y, Orihara M and Miyoshi M. Thermal and mechanical properties of plasticized poly (L-lactide) nanocomposites with organo-modified montmorillonites. J Appl Polym Sci 2006; 99: 2594-2602. https://doi.org/10.1002/app.22268

Hasook A, Tanoue S and Iemoto Y. Characterization and mechanical properties of poly(lactic acid) / poly (ϵ-caprolactone) / organo clay nanocomposites prepared by melt compounding. Polym Eng Sci 2006; 46: 1001-07. https://doi.org/10.1002/pen.20579

Murariu M, Ferreira AD, Degee P, Alexandre M and Dubois P. Polylactide compositions. Part 1: Effect of filler content and size on mechanical properties of PLA/calcium sulfate composites. Polymer 2007; 48: 2613-8. https://doi.org/10.1016/j.polymer.2007.02.067

Jiang L, Zhang J and Wolcott MP. Comparison of polylactide /nanosized calcium carbonate and polylactide/ montmorillonite composites; reinforcing effects and toughening mechanisms. Polymer 2007; 48: 7632-44. https://doi.org/10.1016/j.polymer.2007.11.001

Liang JZ, Zhou L, Tang CY and Tsui CP. Crystalline Properties of poly(L-lactic acid) composites filled with nanometer calcium carbonate. Composites Part B 2013; 45: 1646-1650. https://doi.org/10.1016/j.compositesb.2012.09.086

Andricic B, Kovacic T, Perinovic S and Grgic A. Thermal properties of poly(L-lactide) / calcium carbonate nanocomposites. Macromol Symp 2008; 263: 96-101. https://doi.org/10.1002/masy.200850312

Navarro M, Engel E, Planell JA, Amaral I, Barbosa M and Ginebra MP. Surface characterization and cell response of a PLA / CaP glass biodegradable composite material. J Biomed Mater Res 2008; 85: 477-86. https://doi.org/10.1002/jbm.a.31546

Maurya SD, Purushothaman M, Krishnan PSG and Nayak SK. Effect of nano-calcium carbonate content on the properties of poly(urethane methacrylate) nanocomposites J Thermoplast Comp Mater 2013; 27: 1711-27.

Lin Y, Chen H, Chan CM and Wu J. Nucleating effect of calcium stearate coated CaCO3 nanoparticles on polypropylene. J Colloid Interface Sci 2011; 354: 570-576. https://doi.org/10.1016/j.jcis.2010.10.069

Wang M, Lin L, Peng Q, Ou W and Li H. Crystallization and mechanical properties of isotactic polypropylene/calcium carbonate nanocomposites with a stratified distribution of calcium carbonate. J Appl Polym Sci 2014; 131: 39632. https://doi.org/10.1002/app.39632

Chan CM, Wu J, Li JX and Cheung YK. Polypropylene / calcium carbonate nanocomposites. Polymer 2002; 43: 2981-2992. https://doi.org/10.1016/S0032-3861(02)00120-9

Wu MT and Wu CY. Biodegradable poly(lactic acid)/chitosanmodified montmorillonite nanocomposites:Preparation and characterization. Polym Degrad Stab 2006; 91: 2198-2204. https://doi.org/10.1016/j.polymdegradstab.2006.01.004

Nam YJ, Ray SS and Okamoto M. Crystallization behavior and morphology of biodegradable polylactide/layered silicate nano composite. Macromolecules 2003; 36: 7126-31. https://doi.org/10.1021/ma034623j

Das K, Ray D, Banerjee I, Bandyopadyay NR, Sengupta S, Mohanty AK, et al. Crystalline morphology of PLA/clay nano composite films and its correlation with other properties. J Appl Polym Sci 2010; 118: 143-151. https://doi.org/10.1002/app.32345

Cenna AA, Doyle J, Page NW, Beehag A and Dastoor P. Wear mechanisms in polymer matrix composites abraded by bulk solids. Wear 2000; 240: 207-214. https://doi.org/10.1016/S0043-1648(00)00365-3

Revol JF, Dietrich A and Goring DAI. Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. J Chem 1987; 65: 1724-1725. https://doi.org/10.1139/v87-288

Friedrich K. Crazes and shear bands in semicrystalline thermoplastics Adv Polym Sci 1983; 52: 225-274. https://doi.org/10.1007/BFb0024059

Kim HS, Park BH, Choi JH and Yoon JS. Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites. J Appl Polym Sci 2008; 109: 3087-3092. https://doi.org/10.1002/app.28229

Coats A and Redfern JP. Kinetic parameters from thermo gravimetric data. Natur 1964; 201: 68-69. https://doi.org/10.1038/201068a0

Downloads

Published

2017-02-27

How to Cite

Pundir, A., Gopala Krishnan, P. S. ., & Nayak, S. K. (2017). Effect of Nanocalcium Carbonate Content on the Properties of PLA Nanocomposites. Journal of Composites and Biodegradable Polymers, 5(1), 26–33. https://doi.org/10.12974/2311-8717.2017.05.01.4

Issue

Section

Articles