Genetic Analysis of Agronomic and Quality Traits from Multi-Location white Yam Trials using Mixed Model with Genomic Relationship Matrix

Authors

  • Prince Emmanuel Norman Sierra Leone Agricultural Research Institute, Tower Hill, Sierra Leone
  • Pangirayi Bernard Tongoona West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana
  • Agyemang Danquah West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana
  • Eric Y. Danquah West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana
  • Paterne A. Agre International Institute of Tropical Agriculture, Ibadan, Nigeria
  • Afolabi Agbona International Institute of Tropical Agriculture, Ibadan, Nigeria
  • Robert Asiedu International Institute of Tropical Agriculture, Ibadan, Nigeria
  • Asrat Asfaw International Institute of Tropical Agriculture, Ibadan, Nigeria

DOI:

https://doi.org/10.12974/2311-858X.2022.10.02

Keywords:

Dioscorea rotundata, Genetic estimates, Genetic improvement, Key trait discovery, Trait profiling

Abstract

Traits that define the suitability of a crop for production and consumption are often assessed and predicted to identify superior genotypes for commercial deployment. This study assessed genetic parameter estimates and prediction for 25 agronomic and quality traits in 49 white yam clones. It employed best linear unbiased prediction (BLUP) in a mixed model analysis using genomic relationship matrix derived from 6337 Diversity Array Technology (DArT) molecular markers, multivariate technique of the principal component and canonical discriminant analysis with BLUP predicted values to select key traits for yam breeding. Findings revealed that additive genetic, non-additive genetic and non-genetic factors contributed substantially to phenotypic variation of the studied yam traits. The non-genetic effects accounted for higher variation than the total genetic effects for majority of the traits except yam mosaic virus (YMV), tuber number per plant, ash content, flour yield, peel loss, and protein content. The narrow sense heritability was generally low (<0.30) for all traits except yam anthracnose (0.31), ash content (0.30) and peel loss (0.89). Trait selection with multivariate analysis identified 15 from the 25 traits with fresh tuber yield, tuber dry matter content (DMC), YMV, root-knot and Scutellonema bradys nematode susceptibility as the most important traits for white yam variety testing. This paper presents the importance of complementing BLUP prediction that accounts for the relationship among the genotypes with multivariate analysis for genetic parameter estimation, prediction and selection in yam breeding trials to accelerate the genetic gains.

References

Otoo E, Osei K, Adomako J, Agyeman A, Amele A, de Koeyer D, Adebola P, Asiedu R. GGE biplot analysis of 12 Dioscorea rotundata genotypes in Ghana. Journal of Agricultural Science, 2018; 10(1), 241-263. https://doi.org/10.5539/jas.v10n1p249

[ 2] Otoo E, Asiedu R. The performance profile of Dioscorea rotundata Cultivar "Dorban" genotypes in Ghana using GGE biplot analysis. Journal of Food, Agriculture and Environment, 2009a; 7(1), 150-155.

[ 3] Akinyele BO, Osekita OS. Genotype environment interaction in NH47-4 variety of okra-Abelmoschus esculentus (Linn.) Moench. International Journal of Genetics & Molecular Biology, 2011; 3(4), 55-59.

[ 4] Sakin MA, Akincl C, Duzdemir O, Donmez E. Assessment of genotype environment interaction on yield and Yield Components of Durum Wheat Genotypes by Multivariate analyses. African Journal of Biotechnology, 2011; 10(15), 2875-2885. https://doi.org/10.5897/AJB10.2197

[ 5] Crossa J. From genotype environment interaction to gene environment interaction. Current Genomics, 2012; 13(3), 225-244. https://doi.org/10.2174/138920212800543066

[ 6] Ssemakula G, Dixon A. Genotype environment interaction, stability and agronomic performance of carotenoid-rich cassava clones. Scientific Research and Essay, 2007; 2(9), 390-399.

[ 7] Malosetti M, R ibaut JM, van Eeuw ijk FA. The statistical analysis of multi-environment data: Modeling genotype-by- environment interaction and its genetic basis. Frontier Physiology, 2013; 4(44), 1-17. https://doi.org/10.3389/fphys.2013.00044

[ 8] Eticha F, Grausgruber H, Berghoffer E. Multivariate analysis of agronomic and quality traits of hull-less spring barley (Hordeum vulgare L.). Journal of Plant Breeding and Crop Science, 2010; 2(5), 81-95.

[ 9] Norman PE. Morphological and cytological diversity of some yams (Dioscorea spp.) in Sierra Leone, M.Sc. Thesis, University of KwaZulu-Natal, South Africa, 2010; 142 p.

[ 10] Nielsen JP, Munck L. Evaluation of malting barley quality using exploratory data analysis. I. Extraction of information from micromalting data of spring and winter barley. Journal of Cereal Science, 2003; 38(2), 173-180. https://doi.org/10.1016/S0733-5210(03)00023-7

[ 11] Crossa J, Cornelius PL. Site regression and shifted multiplicative model clustering of cultivar trial sites under heterogeneity of error variances. Crop Science, 1997; 37(2), 406-415. https://doi.org/10.2135/cropsci1997.0011183X003700020017 x

[ 12] Gauch HG. Zobel RW. Identifying mega-environments and targeting genotypes. Crop Science, 1997; 37(2), 311-326. https://doi.org/10.2135/cropsci1997.0011183X003700020002 x

[ 13] Piepho HP. Ridge regression and extensions for genomewide selection in maize. Crop Science, 2009; 49(4), 11651176. https://doi.org/10.2135/cropsci2008.10.0595

[ 14] Burgueño J, Crossa J, Cornelius PL, Trethowan R, McLaren G, Krishnamachari A. Modeling additive × environment and additive × additive × env ironment using genetic covariances of relatives of wheat genotypes. Crop Science, 2007; 47(1), 311-320. https://doi.org/10.2135/cropsci2006.09.0564

[ 15] Muñoz PR, Resende MFR Jr, Huber DA, Quesada T, Resende MDV, Neale DB, Wegrzyn JL, Kirst M, Peter GF. Genomic relationship matrix for correcting pedigree errors in breeding populations: Impact on genetic parameters and genomic selection accuracy. Crop Science, 2014a; 54(3), 1115-1123. https://doi.org/10.2135/cropsci2012.12.0673

[ 16] Muñoz PR, Resende MFR Jr, Gezan SV, Resende MDV, de los Campos G, Kirst M, Huber D, Peter GF. Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics, 2014b; 198(4), 1759-1768. https://doi.org/10.1534/genetics.114.171322

[ 17] Wright S. Coefficients of inbreeding and relationship. American Naturalist, 1922; 56(645), 330-338. https://aipl.arsusda.gov/publish/other/wright1922.pdf. https://doi.org/10.1086/279872

[ 18] Van Raden PM. Genomic measures of relationship and inbreeding. Animal Improvement. Interbull Bulletin, 2007; 37(1), 33-36. https://journal.interbull.org/index.php/ib /issue56

[ 19] Caballero A, Toro MA. Analysis of genetic diversity for the management of conserved subdivided populations. Conservation Genetics, 2002; 3(3), 289-299. https://doi.org/10.1023/A:1019956205473

[ 20] Dodds KG, Tate ML, Sise JA. Genetic evaluation using parentage information from genetic markers. Journal of Animal Science, 2005; 83(10), 2271-2279. https://doi.org/10.2527/2005.83102271x

[ 21] Otoo E, Asiedu R. GGE Biplot Analysis of Dioscorea rotundata cultivar "Tela" genotypes in Ghana. Journal of Food, Agriculture and Environment, 2009b; 7(1), 134-139.

[ 22] Otoo E, Asiedu R. GGE biplot analysis of Dioscorea rotundata cultivar "DENTE" in Ghana. African Journal of Agricultural Research, 2008; 3(2), 115-125.

[ 23] Otoo E, Okonkwo CC, Asiedu R. Stability studies of hybrid yam (Dioscorea rotundata Poir.) genotypes in Ghana. Journal of Food, Agriculture and Environment, 2006; 4(1), 234-238.

[ 24] Egesi CN, Asiedu, R. Analysis of yam yields using the additive main effects and multiplicative interaction (AMMI) model. African Crop Science Journal, 2002; 10(3), 195-201.

[ 25] Asfaw A. ed. Standard operating protocol for yam variety performance evaluation trial. IITA, Ibadan, Nigeria, 2016; 27 p.

[ 26] Markwell J, Osterman JC, Mitchell JL. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 1995; 46(3), 467-472. https://doi.org/10.1007/BF00032301

[ 27] Rife TW, Poland JA. Field Book: An Open-Source Application for Field Data Collection on Android. Crop Science, 2014; 54(4), 1624-1627. https://doi.org/10.2135/cropsci2013.08.0579

[ 28] Forbes G, Pérez W, Andrade Piedra J. Field assessment of resistance in potato to Phytophthora infestans. Lima (Peru). International Potato Center (CIP), 2014; 35 p.

[ 29] AOAC Association of Official Analytical Chemists. Official methods of Analysis. 2 vols. 15th Edition, Association of Official Analytical Chemists, Washington DC, U, 1990.

[ 30] Asaoka M, Blanshard JMV, Richard JE. Effects of cultivar and growth season on the gelatinization properties of cassava (Manihot esculenta) starch. Journal of the Science of Food & Agriculture, 1992; 59(1), 53-58. https://doi.org/10.1002/jsfa.2740590108

[ 31] Krochmal A, Kilbride B. An inexpensive laboratory method for cassava starch extraction. Journal of Agriculture University of Puerto Rico, 1966; 50(3), 252-253. https://doi.org/10.46429/jaupr.v50i3.3464

[ 32] Newport Scientific. Operation manual for the Series 3 RapidVisco Analyser using thermocline for Windows. Newport Scientific Pty. Ltd.: Warriewood, NSW, Australia, 1995.

[ 33] Akinwande BA, Adeyemi IA, Maziya-Dixon B, Asiedu R. Effect of tuber harvest time and storage period on the pasting properties of yam (Dioscorea rotundata) starch. World Journal of Agricultural Science, 2007; 3(6), 781-787.

[ 34] AOAC Association of Official Analytical Chemists Official methods of Analysis 14th (ed.), Association of Official Analytical Chemists, Washington DC, 2005; pp. 125-576.

[ 35] HACH The Halliburton Company Huntington Alloys, Inc. Systems for food, feed and beverage analysis procedures. HACH Company, Loveland, Colourado. 80539-0389, USA, 1990.

[ 36] Dellaporta SL, Wood J, Hicks JB. A plant DNA mini preparation version II. Plant Molecular Biology Reporter, 1983; 1(4), 19-21. https://doi.org/10.1007/BF02712670

[ 37] Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 1997; 25(22), 4692-4693. https://doi.org/10.1093/nar/25.22.4692

[ 38] Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007; 23(19), 2633-2635. https://doi.org/10.1093/bioinformatics/btm308

[ 39] Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by- sequencing (GBS) approach for high diversity species. PloS one, 2011; 6(5), p.e19379. https://doi.org/10.1371/journal.pone.0019379

[ 40] De Mendiburu F. Agricolae-statistical procedure for agricultural research. R-package version 1.3.0, 2019.

[ 41] Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. The Plant Genome, 2011; 4(3), 250-255. https://doi.org/10.3835/plantgenome2011.08.0024

[ 42] Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering. American Journal of Human Genetics, 2007; 81(5), 1084- 1097. https://doi.org/10.1086/521987

[ 43] Lilin-Yin. URL https://github.com/YinLiLin/RCMplot/blob/master/CMplot.r, 2015.

[ 44] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 2007; 81(3), 559-575. https://doi.org/10.1086/519795

[ 45] Patterson HD, Thompson R. Recovery of inter-block information when block sizes are unequal. Biometrika, 1971; 58(3), 545-554. https://doi.org/10.1093/biomet/58.3.545

[ 46] Butler DG, Cullis BR, Gilmour AA, Gogel BJ, Thome R. ASReml-R Reference manual version 4. VSNi Ltd, Hemel Hempstead, HP1IES, UK, 2018.

[ 47] Borgognone MG, Butler DG, Ogbonnaya FC, Drecer MF. Molecular maker information in the analysis of multi- environment trials helps differentiate superior genotypes from promising parents. Scrap Science, 2016; 56, 2612-2668. https://doi.org/10.2135/cropsci2016.03.0151

[ 48] Ovenden B, Milgate A, Wade LJ, Rebetzke GJ, Holland JB. Accounting for genotype-by-env ironment interactions and residual genetic variation in genomic selection for water soluble carbohydrate concentration in wheat. G3 Genes Genome Genetics, 2018; 8(6), 1909-1919. https://doi.org/10.1534/g3.118.200038

[ 49] Burton WG, Devane EH. Estimating heritability in tall Fescue (Festuca arundinacea) from replicated clonal material. Agronomy Journal, 1953; 45(10), 478-481. https://doi.org/10.2134/agronj1953.00021962004500100005x

[ 50] Deshmukh SNN, Basu MS, Reddy PS. Genetic variability, character association and path coefficients of quantitative traits in virginia bunch varieties of groundnut. Indian Journal of Agricultural Science, 1986; 56(12), 816-821.

[ 51] Robinson HF, Comstock RE, Harvey PH. Estimates of heritability and the degree of dominance in corn. Agronomy Journal, 1949; 41(8), 353-359. https://doi.org/10.2134/agronj1949.00021962004100080005x

[ 52] Shukla S, Bhargava A, Chatterjee A, Srivastava J, Singh N, Singh SP. Mineral profile and variability in vegetable amaranth (Amaranthus tricolour). Plant Foods for Human Nutrition, 2006; 61(1), 21-26. https://doi.org/10.1007/s11130-006-0004-x

[ 53] SAS Statistical Analysis System Institute Incorporated. SAS for Windows 9.4. Cary, NC: SAS Institute Inc, 2013.

[ 54] Granati E, Bisignano V, Chiaretti D, Crino P, Polignano BG. Characterization of Italian and exotic Lathyrus germplasm for quality traits. Genetic Resource and Crop Evolution, 2003; 50(3), 273-280. https://doi.org/10.1023/A:1023562532753

[ 55] Kaiser HF. The application of electronic computers to factor analysis. Educational and Psychological Measurements, 1960; 20(1), 141-151. https://doi.org/10.1177/001316446002000116

[ 56] Richman, M. B. (1988). A cautionary note concerning a commonly applied eigenanalysis procedure. Tellus, 40B(1), 50-58. https://doi.org/10.3402/tellusb.v40i1.15629

[ 57] Piaskowski J, Hardner C, Cai L, Zhao Y, Iezzoni A. Peace C. Genomic heritability estimates in sweet cherry reveal non- additive genetic variance is relevant for industry-prioritized traits. BMC Genetics, 2018; 19(1), 23. doi: 10.1186/s12863018-0609-8. https://doi.org/10.1186/s12863-018-0609-8

[ 58] Johnson HW, Robinson HF, Comstock RS. Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 1955; 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x

[ 59] Heffner EL, Sorrells ME, Jannink JL. Genomic selection for crop improvement. Crop Science, 2009; 49(1), 1-12. https://doi.org/10.2135/cropsci2008.08.0512

[ 60] Muranty H, Troggio M, Sadok IB, Rifaï MA, Auwerkerken A, Banchi E, Velasco R, Stevanato P, van de Weg WE, Di Guardo M, Kumar S, Laurence B, Bink MC. Accuracy and responses of genomic selection on key traits in apple breeding. Horticulture Research, 2015; 2, 15060. https://doi.org/10.1038/hortres.2015.60

[ 61] Garcia MR, Carbonell EA, Asíns MJ. QTL analysis of yield and seed number in Citrus. Theoretical and Applied Genetics, 2000; 101(3), 487-493. https://doi.org/10.1007/s001220051507

[ 62] Garcia C, Jordano P, Godoy JA. Contemporary pollen and seed dispersal in a Prunus mahaleb population: patterns in distance and direction. Molecular Ecology, 2007; 16(9), 1947-1955. https://doi.org/10.1111/j.1365-294X.2006.03126.x

[ 63] Resende MF Jr, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MD, Kirst M. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytologist, 2012; 193(3), 617-624. https://doi.org/10.1111/j.1469-8137.2011.03895.x

[ 64] Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D. Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additivedominant model. Heredity, 2017; 119(4), 245-255. https://doi.org/10.1038/hdy.2017.37

[ 65] Norman PE, Asfaw A, Tongoona PB, Danquah A, Danquah EY, Koeyer DD, Asiedu R. Can parentage analysis facilitate breeding activ ities in root and tuber crops? Agriculture Journal, 2018; 8(95), 1-24. https://doi.org/10.3390/agriculture8070095

Downloads

Published

04-08-2022

How to Cite

Norman, P. E. ., Tongoona, P. B. ., Danquah, A. ., Danquah, E. Y. ., Agre, P. A. ., Agbona, A. ., Asiedu, R. ., & Asfaw, A. (2022). Genetic Analysis of Agronomic and Quality Traits from Multi-Location white Yam Trials using Mixed Model with Genomic Relationship Matrix. Global Journal Of Botanical Science, 10, 8–22. https://doi.org/10.12974/2311-858X.2022.10.02

Issue

Section

Articles