Effect of Triple Superphosphate on Growth, Total Chlorophyll Content, Essential Oil and Fatty Acid Compositions in Shoots of Coriander (Coriandrum sativum L.)
DOI:
https://doi.org/10.12974/2311-858X.2014.02.01.1Keywords:
Coriandrum sativum, essential oils, fatty acids, sesquiterpene hydrocarbons, total lipids, triple superphosphate.Abstract
The effect of different doses of triple superphosphate (TSP), 100, 200, and 400 kg P ha-1 on growth, chlorophyll content, and essential oil and fatty acid composition was evaluated in shoots of coriander (Coriandrum sativum L.) grown in a pot experiment under nursery conditions. The application of TSP to 6 weeks-old seedlings induced an increase in shoot height, shoot dry weight, the chlorophyll and total fatty acid contents. However, phosphate fertilizer did not affect the total essential oil content, expressed as % of dry weight. The major constituents of the essential oils are decanal, aromadendrene and a-cadinol. The total content of sesquiterpene hydrocarbons was strongly increased under 200 kg P ha-1 (1.9-fold). The essential oil components aromadendrene, cadalene, a-copaene, a-octan-2-ol and n-decanol, (E)-nerolidol, (E,E)-2,4-decadienal, and myrtenyl acetate, were also increased under phosphate fertilization. Threfore, triple superphosphate application induced changes in the composition of essential oils and fatty acids in coriander shoots, and significantly increased the terpenes and total lipid contents.
References
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – A review. Food Chem Toxicol 2008; 46: 446-475. http://dx.doi.org/10.1016/j.fct.2007.09.106
Matasyoh JC, Maiyo ZC, Ngure RM, Chepkorir R. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chem 2009; 113: 526-529. http://dx.doi.org/10.1016/j.foodchem.2008.07.097
Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Cháfer M. Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Eng Rev 2011; 3: 1-16. http://dx.doi.org/10.1007/s12393-010-9031-3
Hamrouni Sellami I, Bettaieb Rebey I, Sriti J, Rahali F, Limam F, Marzouk B. Drying sage (Salvia officinalis L.) plants and its effects on content, chemical composition, and radical scavenging activity of the essential oil. Food Bioprocess Tech 2011; 1-12.
Burdock GA, Carabin IG. Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. Food Chem Toxicol 2009; 47: 22-34. http://dx.doi.org/10.1016/j.fct.2008.11.006
Burt S. Essential oils: their antibacterial properties and potential applications in foods – A review. Int J Food Microbiol 2004; 94: 223-253. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022
Wangensteen H, Samuelsen AB, Malterud KE. Antioxidant activity in extracts from coriander. Food Chem 2004; 88: 293- 297. http://dx.doi.org/10.1016/j.foodchem.2004.01.047
Gallagher AM, Flatt PR, Duffy G, Abdel-Wahab YHA. The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutr Res 2003; 23: 413-424. http://dx.doi.org/10.1016/S0271-5317(02)00533-X
Chithra V, Leelamma S. Coriandrum sativum – effect on lipid metabolism in 1,2-dimethyl hydrazine induced colon cancer. J Ethnopharmacol 2000; 71: 457-463. http://dx.doi.org/10.1016/S0378-8741(00)00182-3
Zinn K, Liu J, Allan D, Vance C. White Lupin (Lupinus albus) response to phosphorus stress: evidence for complex regulation of LaSAP1. Plant Soil 2009; 322: 1-15. http://dx.doi.org/10.1007/s11104-009-0002-5
Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 1949; 24: 1-15. http://dx.doi.org/10.1104/pp.24.1.1
Msaada K, Hosni K, Ben Taarit M, Chahed T, Marzouk B. Variations in the essential oil composition from different parts of Coriandrum sativum L. cultivated in Tunisia. Ital J Biochem 2007; 56: 47-52.
Msaada K, Hosni K, Ben Tâarit M, Chahed T, Kchouk ME, Marzouk B. Changes on essential oil composition of coriander (Coriandrum sativum L.) fruits during three stages of maturity. Food Chem 2007; 102: 1131-1134. http://dx.doi.org/10.1016/j.foodchem.2006.06.046
Kovats E. Gas chromatographic characterization of organic substances in the retention index system. Adv Chromatogr 1965; 1: 229-247.
Folch JM, Lee GH, Stanley S. A simple method for the isolation of total lipids from animal tissues. J Biol Chem 1957; 226: 497-509.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911-917. http://dx.doi.org/10.1139/o59-099
Douce R. Identification et dosage de quelques glycérophospholipides dans les souches normales et tumorales de scorsomères cultivèes in vitro. CR Acad Sci Paris 1964; 259: 3066-3068.
Saharkhiz MJ, Omidbaigi R. The Effect Phosphorus on the Productivity of Feverfew (Tanacetum parthenium (L.) Schultz Bip). Adv Nat Appl Sci 2008; 2: 63-67.
Tunçturk R, Tunçturk M. Effects of different Phosphorus levels on the yield and quality components of cumin (Cuminum cyminum L.). Res J Agric Bio Sci 2006; 2: 336- 340.
Trivino MG, Johnson CB. Season has a major effect on the essential oil yield response to nutrient supply in Origanum majorana. J Hortic Sci Biotech 2000; 75: 520-527.
Ichimura M, Ikushima M, Miyazaki T, Kimura M. Effect of phosphorus on growth and concentration of mineral elements and essential oils of sweet basil leaves. Acta Hort 1995; 396: 195-202.
Das AK, Sadhu MK, Som MG. Effect of N and P levels on growth and yield of black cumin (Nigella sativa L.). Hort J 1991; 4: 41-47.
Neffati M, Marzouk B. Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crops Prod 2008; 28: 137-142. http://dx.doi.org/10.1016/j.indcrop.2008.02.005
Ben Tâarit M, Msaada K, Hosni K, Marzouk B. Physiological changes and essential oil composition of clary sage (Salvia sclarea L.) rosette leaves as affected by salinity. Acta Physiol Plant 2011; 33: 153-162. http://dx.doi.org/10.1007/s11738-010-0532-8
Harrathi J, Hosni K, Karray-Bouraoui N, Attia H, Marzouk B, Magné C, Lachaâl M. Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiol Plant 2012; 34: 129-137. http://dx.doi.org/10.1007/s11738-011-0811-z
Baâtour O, Kaddour R, Aidi Wannes W, Lachaâl M, Marzouk B. Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol Plant 2010; 32: 45-51. http://dx.doi.org/10.1007/s11738-009-0374-4
Neffati M, Sriti J, Hamdaoui G, Kchouk ME, Marzouk B. Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chem 2011; 124: 221-225. http://dx.doi.org/10.1016/j.foodchem.2010.06.022
Laribi B, Bettaieb I, Kouki K, Sahli A, Mougou A, Marzouk B. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind Crop Prod 2009; 30: 372-379. http://dx.doi.org/10.1016/j.indcrop.2009.07.005
Bettaieb Rebey I, Jabri-Karoui I, Hamrouni Sellami I, Bourgou S, Limam F, Marzouk B. Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind Crop Prod 2012; 36: 238- 245. http://dx.doi.org/10.1016/j.indcrop.2011.09.013
Prasad A, Kumar S, Pandey A, Chand S. Microbial and chemical sources of phosphorus supply modulate the yield and chemical composition of essential oil of rose-scented geranium (Pelargonium species) in sodic soils. Biol Fert Soils 2012; 48: 117-122. http://dx.doi.org/10.1007/s00374-011-0578-9
Lichtenthaler HK. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 1999; 50: 47-65. http://dx.doi.org/10.1146/annurev.arplant.50.1.47
Rodríguez-Concepción M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 2002; 130: 1079- 1089. http://dx.doi.org/10.1104/pp.007138
Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol 1995; 46: 521-547. http://dx.doi.org/10.1146/annurev.pp.46.060195.002513
McGarvey DJ, Croteau R. Terpenoid metabolism. Plant Cell 1995; 7: 1015-1026. http://dx.doi.org/10.1105/tpc.7.7.1015
Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 1998; 5: 221-R233. http://dx.doi.org/10.1016/S1074-5521(98)90002-3
Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 1999; 16: 565-574. http://dx.doi.org/10.1039/a709175c
Lichtenthaler HK. Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 2000; 28: 785-789. http://dx.doi.org/10.1042/BST0280785
Mahmoud SS, Croteau RB. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 2001; 98: 8915-8920. http://dx.doi.org/10.1073/pnas.141237298
Hampel D, Mosandl A, Wüst M. Biosynthesis of mono- and sesquiterpenes in strawberry fruits and Foliage: 2H labeling studies. J Agric Food Chem 2006; 54: 1473-1478. http://dx.doi.org/10.1021/jf0523972
Guevara-García A, San Román C, Arroyo A, Cortés ME, de la Luz Gutiérrez-Nava M, León P. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-d-Erythritol 4- Phosphate Pathway. Plant Cell 2005; 17: 628-643. http://dx.doi.org/10.1105/tpc.104.028860
Muñoz-Bertomeu J, Arrillaga I, Ros R, Segura J. Upregulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol 2006; 142: 890-900. http://dx.doi.org/10.1104/pp.106.086355
Estévez JM, Cantero A, Reindl A, Reichler S, León P. 1- deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 2001; 276: 22901-22909. http://dx.doi.org/10.1074/jbc.M100854200
Russell NJ. Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci 1984; 9: 108-112. http://dx.doi.org/10.1016/0968-0004(84)90106-3
Somerville C. Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Natl Acad Sci USA 1995; 92: 6215-6218. http://dx.doi.org/10.1073/pnas.92.14.6215
Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A. Salt Induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 2002; 129: 1320-1329. http://dx.doi.org/10.1104/pp.001909
Needleman P, Truk J, Jakschik BA, Morrison AR, Lefkowith JB. Arachidonic acid metabolism. Annu Rev Biochem 1986; 55: 69-102. http://dx.doi.org/10.1146/annurev.bi.55.070186.000441
Sakuradani E, Kobayashi M, Ashikari T, Shimizu S. Identification of 12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 1999; 261: 812- 820. http://dx.doi.org/10.1046/j.1432-1327.1999.00333.x
Xu X, Beardall J. Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake. Phytochemistry 1997; 45: 655-658. http://dx.doi.org/10.1016/S0031-9422(96)00868-0
Flagella Z, Giuliani MM, Rotunno T, Di Caterina R, De Caro A. Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. Eur J Agron 2004; 21: 267-272. http://dx.doi.org/10.1016/j.eja.2003.09.001
Baâtour O, Kaddour R, Mahmoudi H, Tarchoun I, Bettaieb I, Nasri N, Mrah S, Hamdaoui G, Lachaâl M, Marzouk B. Salt effects on Origanum majorana fatty acid and essential oil composition. J Sci Food Agric 2011; 91: 2613-2620. http://dx.doi.org/10.1002/jsfa.4495
Ben Taârit M, Msaada K, Hosni K, Marzouk B. Fatty acids, phenolic changes and antioxidant activity of clary sage (Salvia sclarea L.) rosette leaves grown under saline conditions. Ind Crop Prod 2012; 38: 58-63. http://dx.doi.org/10.1016/j.indcrop.2012.01.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Radhouane Chaffai, Yosra Hfaiedh, Brahim Marzouk

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.