Proteomic Studies: Contribution to Understanding Plant Salinity Stress Response

Authors

  • Md. Sanower Hossain Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, and 5200 Kuantan, Malaysia 2Department of Biological Sciences, Faculty of Science, Sristy College of Tangail, 1900 Tangail, Bangladesh

DOI:

https://doi.org/10.12974/2311-858X.2020.08.1

Keywords:

Abiotic stress, Genome, Plant proteomics, Proteome, Salinity, Tools.

Abstract

Salinity stress significantly abridged the productivity of global crops. Developing and improving the salinity stress-tolerant species is urgent to continue the food supply in the coming decades; otherwise many individuals might die due to hunger or food insecurity. The genome of plants under saline conditions represents physiological alterations; however, it does not represent the change of protein level reflected by corresponding gene expression at the transcriptome level. While proteins are more reliable determinant since they are directly involved in shaping salinity stress-adapted novel phenotype of physiological traits. Moreover, protein profiles display greater changes then the transcript levels. Therefore, exploring the protein complement of the genome would be naturalistic to elucidate the mechanism of salt tolerance in plants. In this review, an attempt is made to present the role and implementation of proteomic studies in response to plant salinity stress and its significant contributions so far made for better understanding the complex mechanism of the plant under salinity stress. Moreover, brief characteristics of plants in saline conditions and the limitation of proteomic studies are further discussed. 

References

Hossain MS. Present scenario of global salt affected soils, its management and importance of salinity research. International Research Journal of Biological Sciences 2019; 1(1): 1-3.

Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, et al. The global technical and economic potential of bioenergy from salt-affected soils. Energy & Environmental Science 2011; 4(8): 2669-81. https://doi.org/10.1039/c1ee01029h

Tanji KK. Salinity in the soil environment. Salinity: Environment-plants-molecules: Springer 2002. p. 21-51. https://doi.org/10.1007/0-306-48155-3_2

Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol 2008; 59: 651-81. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003; 218(1): 1-14. https://doi.org/10.1007/s00425-003-1105-5

Pitman MG, Läuchli A. Global impact of salinity and agricultural ecosystems. Salinity: Environment-plantsmolecules: Springer 2002. p. 3-20. https://doi.org/10.1007/0-306-48155-3_1

Allison LE, Bernstein L, Bower CA, Brown JW, Fireman M, Hatcher JT, et al. Diagnosis and improvement of saline and alkali soils. In: Richards LA, editor. Saline and Alkaline Soils USDA Handbook No. 60. Washington, D. C.: United States Department of Agriculture 1954. p. 4-5.

USDA-ARS. Ussl research databases. In: Agriculture USoDo, editor. Salt Tolerance Databases. Riverside, CA: Agricultural Water Efficiency and Salinity Research Unit 2020.

Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview. Arch Biochem Biophys 2005; 444(2): 139-58. https://doi.org/10.1016/j.abb.2005.10.018

Mishra A, Tanna B. Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in plant science 2017; 8: 829-. https://doi.org/10.3389/fpls.2017.00829

Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mrna abundance in yeast. Molecular and cellular biology 1999; 19(3): 1720-30. https://doi.org/10.1128/MCB.19.3.1720

Bogeat-Triboulot MB, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, et al. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in populus euphratica, a poplar growing in arid regions. Plant Physiol 2007; 143(2): 876-92. https://doi.org/10.1104/pp.106.088708

Pikaard CS, Mittelsten Scheid O. Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 2014; 6(12): a019315. https://doi.org/10.1101/cshperspect.a019315

Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Frontiers in plant science 2018; 9: 122. https://doi.org/10.3389/fpls.2018.00122

Jorrin-Novo JV, Maldonado AM, Echevarria-Zomeno S, Valledor L, Castillejo MA, Curto M, et al. Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill miape standards, increase plant proteome coverage and expand biological knowledge. Journal of proteomics 2009; 72(3): 285-314. https://doi.org/10.1016/j.jprot.2009.01.026

Kosová K, Prášil IT, Vítámvás P. Protein contribution to plant salinity response and tolerance acquisition. International journal of molecular sciences 2013; 14(4): 6757-89. https://doi.org/10.3390/ijms14046757

Ismail NA, Hossain MS, Mustafa NHM, Phang IC. Morphophysiological characteristics, selected macronutrient uptake, and oxidative stress level of andrographis paniculata under saline condition. Jurnal Teknologi 2015; 77(24): 135-40. https://doi.org/10.11113/jt.v77.6721

Hossain MS, Ismail NA, Phang IC. Effect of salinity stress on the morphology and physiology of andtrographis paniculata. International Association for Plant Biotechnology Congress. Melbourne Convention and Exhibition Centre, Australia: International Association of Plant Biotechnology 2014. p. 204.

Razmjoo K, Heydarizadeh P, Sabzalian MR. Effect of salinity and drought stresses on growth parameters and essential oil content of matricaria chamomile. Int J Agric Biol 2008; 10(4): 451-4.

Chaves M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany 2009; 103(4): 551-60. https://doi.org/10.1093/aob/mcn125

Flowers TJ. Improving crop salt tolerance. J Exp Bot 2004; 55(396): 307-19. https://doi.org/10.1093/jxb/erh003

Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 2005; 24(1): 23-58. https://doi.org/10.1080/07352680590910410

Munns R. Comparative physiology of salt and water stress. Plant Cell Environ 2002; 25(2): 239-50. https://doi.org/10.1046/j.0016-8025.2001.00808.x

Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics 2017; 169: 176-88. https://doi.org/10.1016/j.jprot.2017.05.018

Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: Technologies and their applications. J Chromatogr Sci 2017; 55(2): 182-96. https://doi.org/10.1093/chromsci/bmw167

Kosová K, Vítámvás P, Prášil IT, Renaut J. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. Journal of Proteomics 2011; 74(8): 1301-22. https://doi.org/10.1016/j.jprot.2011.02.006

Turewicz M, Kohl M, Ahrens M, Mayer G, Uszkoreit J, Naboulsi W, et al. Bioinfra.Prot: A comprehensive proteomics workflow including data standardization, protein inference, expression analysis and data publication. Journal of Biotechnology 2017; 261: 116-25. https://doi.org/10.1016/j.jbiotec.2017.06.005

NCBI. https://pubmed.ncbi.nlm.nih.gov. Accessed 15 June, 2020. Terms used- proteome/proteomics; AND stress studies; AND plant salinity stress studies.

Pandey A, Mann M. Proteomics to study genes and genomes. Nature 2000; 405(6788): 837-46. https://doi.org/10.1038/35015709

Park OK. Proteomic studies in plants. Journal of Biochemistry and Molecular Biology 2004; 37(1): 133-8. https://doi.org/10.5483/BMBRep.2004.37.1.133

Wang L, Liu X, Liang M, Tan F, Liang W, Chen Y, et al. Proteomic analysis of salt-responsive proteins in the leaves of mangrove kandelia candel during short-term stress. PloS one 2014; 9(1): e83141. https://doi.org/10.1371/journal.pone.0083141

Tuteja N. Mechanisms of high salinity tolerance in plants. In: Häussinger D, Sies H, editors. Methods in enzymology2007. p. 419-38. https://doi.org/10.1016/S0076-6879(07)28024-3

Nyong'a TM, Yang P, Li M. Proteomics study in rice responses and tolerance to salt stress. Advances in rice research for abiotic stress tolerance: Elsevier 2019. p. 781-9. https://doi.org/10.1016/B978-0-12-814332-2.00039-3

Frukh A, Siddiqi TO, Khan MIR, Ahmad A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol Biochem 2020; 146: 55-70. https://doi.org/10.1016/j.plaphy.2019.11.011

Kim ST, Kim SG, Agrawal GK, Kikuchi S, Rakwal R. Rice proteomics: A model system for crop improvement and food security. PROTEOMICS 2014; 14(4-5): 593-610. https://doi.org/10.1002/pmic.201300388

Liu CW, Chang TS, Hsu YK, Wang AZ, Yen HC, Wu YP, et al. Comparative proteomic analysis of early salt stress‐responsive proteins in roots and leaves of rice. PROTEOMICS 2014. https://doi.org/10.1002/pmic.201300276

Ramani S, Apte SK. Transient expression of multiple genes in salinity-stressed young seedlings of rice (oryza satival.) cv. Bura rata. Biochemical and Biophysical Research Communications 1997; 233(3): 663-7. https://doi.org/10.1006/bbrc.1997.6521

Ma Q, Shi C, Su C, Liu Y. Complementary analyses of the transcriptome and itraq proteome revealed mechanism of ethylene dependent salt response in bread wheat (triticum aestivum l.). Food Chem 2020; 325: 126866. https://doi.org/10.1016/j.foodchem.2020.126866

Yan M, Xue C, Xiong Y, Meng X, Li B, Shen R, et al. Proteomic dissection of the similar and different responses of wheat to drought, salinity and submergence during seed germination. J Proteomics 2020; 220: 103756. https://doi.org/10.1016/j.jprot.2020.103756

Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad RA, Najafi F, et al. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. Journal of Proteomics 2015; 114(2015): 1- 15. https://doi.org/10.1016/j.jprot.2014.10.018

Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, et al. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. Journal of Proteomics 2014; 108(0): 238-57. https://doi.org/10.1016/j.jprot.2014.04.040

Ouerghi Z, Cornic G, Roudani M, Ayadi A, Brulfert J. Effect of nacl on photosynthesis of two wheat species (triticum durum and t. Aestivum) differing in their sensitivity to salt stress. Journal of plant physiology 2000; 156(3): 335-40. https://doi.org/10.1016/S0176-1617(00)80071-1

Lai Y, Zhang D, Wang J, Wang J, Ren P, Yao L, et al. Integrative transcriptomic and proteomic analyses of molecular mechanism responding to salt stress during seed germination in hulless barley. Int J Mol Sci 2020; 21(1): 359. https://doi.org/10.3390/ijms21010359

Zhu J, Fan Y, Shabala S, Li C, Lv C, Guo B, et al. Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines. Int J Mol Sci 2020; 21(4): 1516. https://doi.org/10.3390/ijms21041516

Mostek A, Börner A, Badowiec A, Weidner S. Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. Journal of plant physiology 2015; 174: 166-76. https://doi.org/10.1016/j.jplph.2014.08.020

Witzel K, Matros A, Strickert M, Kaspar S, Peukert M, Mühling KH, et al. Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins. Molecular plant 2014; 7(2): 336-55. https://doi.org/10.1093/mp/sst063

Witzel K, Weidner A, Surabhi G-K, Börner A, Mock H-P. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. Journal of experimental botany 2009; 60(12): 3545-57. https://doi.org/10.1093/jxb/erp198

Wu D, Shen Q, Qiu L, Han Y, Ye L, Jabeen Z, et al. Identification of proteins associated with ion homeostasis and salt tolerance in barley. PROTEOMICS 2014; 14(11): 1381- 92. https://doi.org/10.1002/pmic.201300221

Tang H, Zhang X, Gong B, Yan Y, Shi Q. Proteomics and metabolomics analysis of tomato fruit at different maturity stages and under salt treatment. Food Chemistry 2020; 311: 126009. https://doi.org/10.1016/j.foodchem.2019.126009

Amini F, Ehsanpour A, Hoang Q, Shin JS. Protein pattern changes in tomato under in vivo salt stress. Russian Journal of plant physiology 2007; 54(4): 464-71. https://doi.org/10.1134/S102144370704005X

Zhou S, Sauve R, Fish T, Thannhauser TW. Salt-induced and salt-suppressed proteins in tomato leaves. Journal of the American Society for Horticultural Science 2009; 134(2): 289- 94. https://doi.org/10.21273/JASHS.134.2.289

QIU Y-w, Zhe F, FU M-m, YUAN X-h, LUO C-c, YU Y-b, et al. Gsmapk4, a positive regulator of soybean tolerance to salinity stress. Journal of integrative agriculture 2019; 18(2): 372-80. https://doi.org/10.1016/S2095-3119(18)61957-4

Aghaei K, Ehsanpour A, Shah A, Komatsu S. Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 2009; 36(1): 91-8. https://doi.org/10.1007/s00726-008-0036-7

Ma H, Song L, Huang Z, Yang Y, Wang S, Wang Z, et al. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EuPA Open Proteomics 2014; 4(2014): 40-57. https://doi.org/10.1016/j.euprot.2014.05.005

Yin Y, Yang R, Han Y, Gu Z. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress. Journal of Proteomics 2015; 113: 110-26. https://doi.org/10.1016/j.jprot.2014.09.023

Guo M, Li H, Li L, Cheng X, Gao W, Xu Y, et al. Comparative proteomic analysis of arabidopsis thaliana roots between wild type and its salt-tolerant mutant. Journal of Plant Interactions 2014; 9(1): 330-7. https://doi.org/10.1080/17429145.2013.833653

Jiang Y, Yang B, Harris NS, Deyholos MK. Comparative proteomic analysis of nacl stress-responsive proteins in arabidopsis roots. Journal of Experimental Botany 2007; 58(13): 3591-607. https://doi.org/10.1093/jxb/erm207

Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X. Comparative proteomics of salt tolerance in arabidopsis thaliana and thellungiella halophila. Journal of proteome research 2010; 9(5): 2584-99. https://doi.org/10.1021/pr100034f

Hossain MS. The effect of salinity stress on the morphophysiology and protein profile of andrographis paniculata. Kuala Lumpur, Malaysia: International Islamic University Malaysia; 2016.

Talei D, Valdiani A, Rafii MY, Maziah M. Proteomic analysis of the salt-responsive leaf and root proteins in the anticancer plant andrographis paniculata nees. PloS one 2014; 9(11): e112907. https://doi.org/10.1371/journal.pone.0112907

Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S. Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 2011; 11(10): 1965- 75. https://doi.org/10.1002/pmic.201000564

Tada Y, Kashimura T. Proteomic analysis of salt-responsive proteins in the mangrove plant, bruguiera gymnorhiza. Plant and cell physiology 2009; 50(3): 439-46. https://doi.org/10.1093/pcp/pcp002

Zhu Z, Chen J, Zheng H-L. Physiological and proteomic characterization of salt tolerance in a mangrove plant, bruguiera gymnorrhiza (l.) lam. Tree physiology 2012; 32(11): 1378-88. https://doi.org/10.1093/treephys/tps097

Du C-X, Fan H-F, Guo S-R, Tezuka T, Li J. Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 2010; 71(13): 1450-9. https://doi.org/10.1016/j.phytochem.2010.05.020

Xing J, Pan D, Wang L, Tan F, Chen W. Proteomic and physiological responses in mangrove kandelia candel roots under short-term high-salinity stress. Turk J Biol 2019; 43(5): 314-25. https://doi.org/10.3906/biy-1906-22

Wang L, Pan D, Li J, Tan F, Hoffmann-Benning S, Liang W, et al. Proteomic analysis of changes in the kandelia candel chloroplast proteins reveals pathways associated with salt tolerance. Plant Science 2015; 231: 159-72. https://doi.org/10.1016/j.plantsci.2014.11.013

Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH. Effects of salinity levels on proteome of suaeda aegyptiaca leaves. Proteomics 2006; 6(8): 2542-54. https://doi.org/10.1002/pmic.200500328

Li W, Zhang C, Lu Q, Wen X, Lu C. The combined effect of salt stress and heat shock on proteome profiling in suaeda salsa. Journal of plant physiology 2011; 168(15): 1743-52. https://doi.org/10.1016/j.jplph.2011.03.018

Vincent D, Ergül A, Bohlman MC, Tattersall EAR, Tillett RL, Wheatley MD, et al. Proteomic analysis reveals differences between vitis vinifera l. Cv. Chardonnay and cv. Cabernet sauvignon and their responses to water deficit and salinity. Journal of Experimental Botany 2007; 58(7): 1873-92. https://doi.org/10.1093/jxb/erm012

Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K. Gelbased and gel-free quantitative proteomics approaches at a glance. International journal of plant genomics 2012; 2012. https://doi.org/10.1155/2012/494572

Neha S, Harikumar SL. Use of genomics and proteomics in pharmaceutical drug discovery and development: A review. International Journal of Pharmacy and Pharmaceutical Sciences 2013; 5(3): 24-8.

Plomion C, Lalanne C, Claverol S, Meddour H, Kohler A, Bogeat-Triboulot M-B, et al. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 2006; 6(24): 6509-27. https://doi.org/10.1002/pmic.200600362

Andrecht S, von Hagen J. General aspects of sample preparation for comprehensive proteome analysis. In: Hagen Jv, editor. Proteomics sample preparation. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA 2008. p. 5-20. https://doi.org/10.1002/9783527622832.ch2

Graves PR, Haystead TA. A functional proteomics approach to signal transduction. Recent Prog Horm Res 2003; 58: 1- 24. https://doi.org/10.1210/rp.58.1.1

Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, et al. Genetic versus chemoprotective activation of nrf2 signaling: Overlapping yet distinct gene expression profiles between keap1 knockout and triterpenoid-treated mice. Carcinogenesis 2009; 30(6): 1024- 31. https://doi.org/10.1093/carcin/bgp100

Salekdeh GH, Siopongco J, Wade L, Ghareyazie B, Bennett J. A proteomic approach to analyzing drought-and saltresponsiveness in rice. Field Crops Research 2002; 76(2): 199-219. https://doi.org/10.1016/S0378-4290(02)00040-0

Ghaffari A, Gharechahi J, Nakhoda B, Salekdeh GH. Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Journal of plant physiology 2014; 171(1): 31-44. https://doi.org/10.1016/j.jplph.2013.07.014

Hwang I, Sheen J, Muller B. Cytokinin signaling networks. Annu Rev Plant Biol 2012; 63(1): 353-80. https://doi.org/10.1146/annurev-arplant-042811-105503

Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, et al. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 2010; 78(3): 224-31. https://doi.org/10.1016/j.chemosphere.2009.11.004

Gautam A, Pandey P, Pandey AK. Proteomics in relation to abiotic stress tolerance in plants. In: Tripathi DK, Singh VP, Chauhan DK, Sharma S, Prasad SM, Dubey NK, et al., editors. Plant life under changing environment: Responses and management: Academic press, an imprint of Elsevier 2020. p. 513-41. https://doi.org/10.1016/B978-0-12-818204-8.00023-0

Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (oryza sativa l.) seedlings. Proteomics 2002; 2(8): 947-59. https://doi.org/10.1002/1615-9861(200208)2:8<947::AIDPROT947> 3.0.CO;2-J

Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA. Stress-induced morphogenic responses: Growing out of trouble? Trends in Plant Science 2007; 12(3): 98-105. https://doi.org/10.1016/j.tplants.2007.01.004

Chen G, Gharib TG, Huang C-C, Taylor JM, Misek DE, Kardia SL, et al. Discordant protein and mrna expression in lung adenocarcinomas. Molecular & cellular proteomics 2002; 1(4): 304-13. https://doi.org/10.1074/mcp.M200008-MCP200

Pradet-Balade B, Boulmé F, Beug H, Müllner EW, Garcia- Sanz JA. Translation control: Bridging the gap between genomics and proteomics? Trends in biochemical sciences 2001; 26(4): 225-9. https://doi.org/10.1016/S0968-0004(00)01776-X

Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Molecular & cellular proteomics 2004; 3(10): 960-9. https://doi.org/10.1074/mcp.M400055-MCP200

Yan S, Tang Z, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. PROTEOMICS 2005; 5(1): 235-44. https://doi.org/10.1002/pmic.200400853

Yan S-P, Zhang Q-Y, Tang Z-C, Su W-A, Sun W-N. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & cellular proteomics 2006; 5(3): 484-96. https://doi.org/10.1074/mcp.M500251-MCP200

Bagci SA, Ekiz H, Yilmaz A. Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry 2003; 27(5): 253-60.

Komatsu S, Ahsan N. Soybean proteomics and its application to functional analysis. Journal of Proteomics 2009; 72(3): 325-36. https://doi.org/10.1016/j.jprot.2008.10.001

Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I. Farm animal proteomics--a review. J Proteomics 2011; 74(3): 282-93. https://doi.org/10.1016/j.jprot.2010.11.005

D'Alessandro A, Zolla L. Meat science: From proteomics to integrated omics towards system biology. J Proteomics 2013; 78: 558-77. https://doi.org/10.1016/j.jprot.2012.10.023

Roncada P, Piras C, Soggiu A, Turk R, Urbani A, Bonizzi L. Farm animal milk proteomics. J Proteomics 2012; 75(14): 4259-74. https://doi.org/10.1016/j.jprot.2012.05.028

Cifani P, Kentsis A. Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics 2017; 17(1-2): 10.1002/pmic.201600079. https://doi.org/10.1002/pmic.201600079

Mary S, Currie G, Schutte AE, Delles C. Cardiovascular proteomics. Precision medicine for investigators, practitioners and providers: Elsevier 2020. p. 263-70. https://doi.org/10.1016/B978-0-12-819178-1.00025-3

Johnson EC, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, et al. Large-scale proteomic analysis of alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature medicine 2020; 26(5): 769-80. https://doi.org/10.1038/s41591-020-0815-6

Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleissner KP, et al. Proteomics in human disease: Cancer, heart and infectious diseases. Electrophoresis 1999; 20(10): 2100-10. https://doi.org/10.1002/(SICI)1522- 2683(19990701)20:10<2100::AID-ELPS2100>3.0.CO;2-D

Bykova NV, Møller IM. Proteomics of plant mitochondria. Annual Plant Reviews online 2018: 211-43. https://doi.org/10.1002/9781119312994.apr0295

Marzano V, Tilocca B, Fiocchi AG, Vernocchi P, Levi Mortera S, Urbani A, et al. Perusal of food allergens analysis by mass spectrometry-based proteomics. J Proteomics 2020; 215: 103636. https://doi.org/10.1016/j.jprot.2020.103636

Raja V, Wani MA, Wani UM, Jan N, John R. Understanding abiotic stress tolerance in plants by proteomics approach. In: Zargar SM, Rai V, editors. Plant omics and crop breeding. 1 ed. New York: Apple Academic Press 2017. p. 409-46. https://doi.org/10.1201/9781315365930-14

Vanderschuren H, Lentz E, Zainuddin I, Gruissem W. Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement. J Proteomics 2013; 93: 5-19. https://doi.org/10.1016/j.jprot.2013.05.036

Mann GW, Joshi HJ, Petzold CJ, Heazlewood JL. Proteome coverage of the model plant arabidopsis thaliana: Implications for shotgun proteomic studies. J Proteomics 2013; 79: 195-9. https://doi.org/10.1016/j.jprot.2012.12.009

Downloads

Published

06-06-2020

How to Cite

Hossain, M. S. (2020). Proteomic Studies: Contribution to Understanding Plant Salinity Stress Response. Global Journal Of Botanical Science, 8, 1–10. https://doi.org/10.12974/2311-858X.2020.08.1

Issue

Section

Articles