Characterization of 6-Gingerol for In Vivo and In Vitro Ginger (Zingiber officinale) Using High Performance Liquid Chromatography 

Authors

  • Usama I. Aly Plant Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
  • Mohamed S. Abbas Department of Natural Resources, Institute of African Research and Studies, Cairo University, Egypt
  • Hussein S. Taha Plant Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Egypt
  • El-Sayed I. Gaber Department of Natural Resources, Institute of African Research and Studies, Cairo University, Egypt

DOI:

https://doi.org/10.12974/2311-858X.2013.01.01.2

Keywords:

Ginger, rhizome, in vitro, callus, TLC, HPLC.

Abstract

Ginger (Zingiber officinale Rosco) belonging to the family Zingiberaceae is one of the world’s most important spices and produces a pungent, aromatic rhizome that is valuable all over the world. Qualitative and quantitative analysis of 6-gingerol in different parts (in vivo and in vitro) of Zingiber officinale using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) have been performed. Data of TLC showed spots having identical Rf value (0.15), according to the synthetic standards of 6-gingerol in all samples extract. 6-gingerol was detected in all extracts of different parts of ginger derived from in vivo and in vitro culture conditions. Quantitative determination of 6-gingerol using HPLC technique was carried out. Comparing with the peaks of 6-gingerol in synthetic standards, in vivo rhizomes and in vitro cultures of different ginger parts was showed similar UV spectra characteristics. The quantity of 6-gingerol in rhizomes (in vivo and in vitro) and in vitro microrhizomes (45.37; 42.64; 28.11 mg/g respectively), were showed a higher value than that of in vitro calli, shoots and roots (7.89; 7.46; 6.40 mg/g respectively).

References

Lawrence BM. Major tropics ginger (Zingiber officinale Rosc.). Perfumer flavourist 1984; 9: 16-20.

Abbas MS, Taha HS, Aly UI, El-Shabrawi HM, Gaber EI. Micropropagation of ginger (Zingiber officinale Rosco). J Genet Eng Biotechnol 2011; 9(2): 165-72. http://dx.doi.org/10.1016/j.jgeb.2011.11.002

Govindarajan V. Ginger-chemistry technology and quality evaluation: Part-I CRC. Crit Rev Food Sci Nutr 1982; 17: 1- 96. http://dx.doi.org/10.1080/10408398209527343

Afzal M, Al-Hadidi D, Menon M, Pesek J, and Dhami MS. Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol Drug Interact 2001; 18: 159-90. http://dx.doi.org/10.1515/DMDI.2001.18.3-4.159

ICMR. Ginger its role in xenobiotic metabolism. ICMR Bull 2003; 33(6).

Jiang X. Effect of Herbal Medicines on the Pharmacokinetics and Pharmacodynamics of Warfarin in Healthy Subjects. Ph.D. Thesis. Faculty of Pharmacy, University of Sydney 2004.

Haugland RP, and Johnson ID. Intracellular Ion Indicators. In: Mason WT, Ed. Fluorescent and Luminescent Probes, 2nd ed. Academic Press, San Diego 1999. http://dx.doi.org/10.1016/B978-012447836-7/50005-1

Balladin DA, Headley O. Liquid chromatographic analysis of the main pungent principles of solar dried West Indian ginger (Zingiber officinale Roscoe). Renewable Energy 1999; 18: 257-61. http://dx.doi.org/10.1016/S0960-1481(98)00764-2

He X, Bernart MW, Lian L, and Lin L. High-performance liquid chromatography-electrospray mass spectrometric analysis of pungent constituents of ginger. J Chromatogr 1998; A, 796: 327-34.

Hori Y, Miura T, Hirai Y, Fukumura M, Nemoto Y, Toriizuka K, Ida Y. Pharmacognostic studies on ginger and related drugs— part 1: five sulfonated compounds from Zingiberis rhizome (Shokyo). Phytochemistry 2003; 62: 613-17. http://dx.doi.org/10.1016/S0031-9422(02)00618-0

Phoungchandang S, and Sanchai P. Process development for ginger powder encapsulation using drum dryer. World Appl Sci J 2009; 7(2): 187-91.

Scott RPW. Chromatographic detectors: Design,function and operation. Chromatographic science series, Marcel Dekker Inc. New York, Basel, Hong Kong 1996; Vol. 70: pp. 120- 214.

Grace OM. The suitability of thin layer chromatography for authenticating bark medicines used in South African traditional healthcare. South Afr J Bot 2003; 69: 165-69.

Zarate R, Yeoman MM. Changes in the amounts of 6- gingerol and derivatives during a culture cycle of ginger, Zingiber officinale. Plant Sci 1996; 121: 115-22. http://dx.doi.org/10.1016/S0168-9452(96)04512-8

Saha S, Smith RM, Lenzb E, Wilson ID. Analysis of a ginger extract by high-performance liquid chromatography coupled to nuclear magnetic resonance spectroscopy using superheated deuterium oxide as the mobile phase. J Chromatogr A 2003; 991: 143-50. http://dx.doi.org/10.1016/S0021-9673(03)00215-2

Shadmani A, Azhar I, Mazhar F, Hassan MM, Ahmed S, Ahmad WI. Usmanghani K, and Shamim S. Kinetic Studies on Zingiber officinale. Pak J Pharmac Sci 2004; 17(1): 47-54.

Ohno T, Mikami E, Oka H. Analysis of crude drugs using reversed-phase TLC/scanning densitometry. (II) Identification of ginseng, red ginseng, gentian, Japanese gentian, pueraria root, gardenia fruit, schisandra fruit and ginger. J Nat Med 2006; 60: 141-45. http://dx.doi.org/10.1007/s11418-005-0018-y

Kim JS, Lee SI, Park HW, Yang JH, Shin T, Kim Y, et al. Cytotoxic components from the dried rhizomes of Zingiber officinale Roscoe. Arch Pharm Res 2008; 31(4): 415-18. http://dx.doi.org/10.1007/s12272-001-1172-y

Sakpakdeejaroen I, Itharat A. Cytotoxic compounds against breast adenocarcinoma cells (mcf-7) from pikutbenjakul. J Health Res 2009; 23(2): 71-76.

Balladin DA, Headley O, Yen C, Mcgaw DR. High pressure liquid chromatographic analysis of the main pungent principles of solar dried West Indian ginger (Zingiber officinale Roscoe). Renewable Energy 1998; 13(4): 531-36. http://dx.doi.org/10.1016/S0960-1481(98)00029-9

Balachandran S, Kentish S, Mawson ER. The effects of both preparation method and season on the supercritical extraction of ginger. Separat Purificat Technol 2006; 48: 94- 105. http://dx.doi.org/10.1016/j.seppur.2005.07.008

Jiang H, Xie Z, Koo HJ, McLaughlin SP, Timmermann BN, Gang DR. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry 2006; 67: 1673- 85. http://dx.doi.org/10.1016/j.phytochem.2005.08.001

Rai S, Mukherjee K, Mal M, Wahile A, Saha BP, Mukherjee PK. Determination of 6-gingerol in ginger (Zingiber officinale) using high-performance thin-layer chromatography. J Sep Sci 2006; 29(15): 2292-5. http://dx.doi.org/10.1002/jssc.200600117

Lee S, Khoo C, Halstead CW, Huynh T, Bensoussan A. Liquid chromatographic determination of 6-, 8-, 10-gingerol, and 6-shogaol in ginger (Zingiber officinale) as the raw herb and dried aqueous extract. J AOAC Int 2007; 90(5): 1219-26.

Schwertner HA, Rios DC. High-performance liquid chromatographic analysis of 6-gingerol, 8-gingerol, 10- gingerol, and 6-shogaol in ginger-containing dietary supplements, spices, teas, and beverages. J Chromatogr B 2007; 856: 41-47. http://dx.doi.org/10.1016/j.jchromb.2007.05.011

Bailey-Shaw YA, Williams LA, Junor GA, Green CE, Hibbert SL, Salmon CN, Smith AM. Changes in the contents of oleoresin and pungent bioactive principles of Jamaican ginger (Zingiber officinale Roscoe.) during maturation. J Agric Food Chem 2008; 56(14): 5564-71. http://dx.doi.org/10.1021/jf072782m

Sanwal SK, Rai N, Singh J, Buragohain J. Antioxidant phytochemicals and gingerol content in diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). Scientia Horticulturae 2010; 124: 280-85. http://dx.doi.org/10.1016/j.scienta.2010.01.003

Downloads

Published

24-03-2022

How to Cite

Usama I. Aly, Mohamed S. Abbas, Hussein S. Taha, & El-Sayed I. Gaber. (2022). Characterization of 6-Gingerol for In Vivo and In Vitro Ginger (Zingiber officinale) Using High Performance Liquid Chromatography . Global Journal Of Botanical Science, 1(1), 9–17. https://doi.org/10.12974/2311-858X.2013.01.01.2

Issue

Section

Articles