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Abstract: Objectives: The aim of the current study was to evaluate quantitatively the effect of age and gender on 
calcium, phosphorus, and calcium-phosphorus ratio in the roots of permanent teeth. 

Methods: Calcium (Ca) and phosphorus (P) mass fractions as well as Ca/P mass fraction ratio were estimated in intact 

tooth root(s) samples from apparently healthy humans, 38 women and 46 men, aged from 16 to 55 years. For Ca and P 
mass fractions measurements, instrumental neutron activation analysis with high resolution spectrometry of short-lived 
radionuclides was used.  

Results: Mean values (mean ± standard error of mean, on dry mass basis) for the investigated parameters in two age 

groups (16-35 and 36-55 years) of females were: Ca 300 ± 12 g/kg, P 163 ± 7 g/kg, Ca/P ratio 1.85 ± 0.07 and  

Ca 277 ± 8 g/kg, P 145 ± 4 g/kg, Ca/P ratio 1.94 ± 0.06, respectively. The investigated parameters in the same age 

groups of males were: Ca 266 ± 13 g/kg, P 143 ± 7 g/kg, Ca/P ratio 1.88 ± 0.04 and Ca 278 ± 10 g/kg, P 152 ± 6 g/kg, 

Ca/P ratio 1.84 ± 0.04, respectively. The mean values for Ca, P and Ca/P ratio in the tooth root(s) were within a very 

wide range of reference data for dentin and close to their median. 

Conclusions: A tendency for reduced Ca and P mass fraction in roots of female teeth after 35 years of age as well as for 
raised Ca mass fraction in female tooth root(s) up to 35 years of age as compared to male was observed.  

Keywords: Neutron activation analysis, calcium, phosphorus, Ca/P ratio, human tooth root(s). 

INTRODUCTION 

Since the development of the ruby laser in 1960, 

several types of lasers have been introduced in the 

dental clinic to remove carious dental hard tissues or 

cavity preparations in anticipation of replacing the high 

speed dental drill [1]. There is many evidence to 

support the further development of ‘laser drill” that are 

stable in use and commercially viable, to deliver more 

efficient hard tissue ablation with less risk of collateral 

thermal damage [2]. However, before application of 

new lasers in the dental clinic, several other 

considerations need to be evaluated, especially on the 

compositional changes of dentin with age, because 

dentin forms the bulk of the tooth and the interaction of 

laser energy with dentin depends from level of its 

mineralization [1-4].  

Dentin consist of an inorganic calcium phosphate 

mineral approximated by hydroxylapatite 

([Ca10(PO4)6(OH)2]), matrix proteins and water. The 

unique physical and chemical properties of these 

“bioapatite” crystals are required for fulfilling the 

biological functions of teeth. Calcium (Ca) and  
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phosphorus (P) are the main chemical elements of 

hydroxylapatite. The mass fraction of Ca in pure 

hydroxyapatite is 39.9%, the mass fraction P - 18.5%, 

and stoichiometric Ca/P mass fraction ratio - 2.15. 

Because dentin is a tissue consisting mainly not only of 

hydroxyapatite, but proteins and water also, the Ca and 

P contents in it may not correspond to hydroxyapatite 

values. Since dentin is a biomaterial that is structurally 

adapted to different chewing functions and loading 

situations in tooth, the exact composition may very 

depending on sex, age, type of tooth and its site, but 

also with alterations known to occur in dental diseases. 

Teeth and bones have many similar physical and 

chemical properties [5]. As was shown by us in 

previous studies [6-20] the Ca and P mass fractions in 

different bones depend from age and gender. These 

findings allow us assume also the age- and gender 

dependence of Ca and P mass fractions in permanent 

teeth.  

The tooth root was chosen for our investigation 

because it consisting mainly not only of dentin, but a 

very thin layer of cementum, that covers the root, and 

the pulp canal(s) located in the center of the root(s) 

also. Thus, the Ca and P contents in tooth root tissue 

reflect the situation during ‘laser drill” more adequately 

than mass fractions of these elements in only dentin. 
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Moreover, if use the tooth root as the subject of study 

there is no necessity to separate any tooth tissue. To 

our knowledge, only one report is available on Ca mass 

fraction in roots of permanent teeth [21]. No data are 

available for the P mass fraction, Ca/P ratio, and age- 

and gender-dependence of these parameters in roots 

of permanent teeth. 

Dentin comprises the main portion of the tooth 

root(s). There are many studies regarding Ca and P 

determination in tooth dentin, using chemical 

techniques and instrumental methods [21-69]. 

However, the majority of these data are based on 

measurements of processed tissue. First of all, dentin 

samples can be chemically contaminated in the course 

of sampling [70-71]. In many studies dentin samples 

are ashed before analysis. In other cases, dentin 

samples are treated with solvents (distilled water, 

ethanol, formaldehyde etc) and then are dried at high 

temperature for many hours. There is evidence that 

certain quantities of chemical elements, including Ca 

and P, are lost as a result of such treatment [71-73]. 

Moreover, only few of these studies employed quality 

control using certified reference materials (CRM) for 

determination of the chemical element mass fractions.  

In our previous reports it was shown that neutron 

activation analysis with high resolution spectrometry of 

short-lived radionuclides (INAA-SLR) is an adequate 

analytical tool for the non-destructive precise 

determination of Ca and P mass fraction in intact teeth 

crowns [74]. 

The primary purpose of this study was to determine 

reference values for the Ca and P mass fraction and 

Ca/P mass fraction ratio in the intact roots of 

permanent teeth using INAA-SLR. The second aim was 

to evaluate the quality of obtained results. The third aim 

was to compare the mean values of Ca and P mass 

fraction and Ca/P mass fraction ratio in different age 

groups in the period of life from 16 to 55 years. The 

final aim was to estimate the difference between Ca 

and P mass fraction and Ca/P mass fraction ratio in the 

teeth roots of males and females. 

All studies were approved by the Ethical Committee 

of the Medical Radiological Research Center, Obninsk.  

MATERIALS AND METHODS 

Samples 

Non carious permanent teeth were collected at the 

Department of Forensic Medicine of the Obninsk 

Hospital. The molars and premolars were extracted 

early after death at necropsy (within 24 hours) from 38 

women and 46 men (age range 16 - 55 years). One 

tooth was obtained from each subject. The typical 

causes of death in most of these subjects included 

traffic accident, occupational injury and domestic 

trauma. All the deceased were citizens of Obninsk. 

None of those who died a sudden death had suffered 

from any systematic or chronic disorders before.  

Sample Preparation 

After extraction teeth were immediately frozen at - 

18°C until use. A titanium tool was used to cut and to 

scrub soft tissue and blood off the roots. After 

separating the roots from crowns with a titanium knife, 

samples were freeze dried until constant mass was 

obtained. Only the roots were used in this study. After 

drying roots were weighed and sealed in thin 

polyethylene films washed with acetone and rectified 

alcohol beforehand. The sealed samples were then 

placed in labeled polyethylene ampoules.  

Method and Reference Materials 

A horizontal channel in the pneumatic rabbit system 

of the WWR-c research nuclear reactor was used to 

determine Ca and P mass fractions by INAA-SLR. Ten 

subsamples of the standard reference material NIST 

SRM1486 bone meal and certified reference material 

IAEA H-5 animal bone, were analyzed under the same 

conditions as teeth roots samples to estimate the 

precision and accuracy of results. 

The basement of INAA is the irradiation of stable 

atoms in the sample by neutrons, the transmutation of 

atoms in radionuclides, and the spectrometry of their 

self-radiations. Details of nuclear reactions, 

radionuclides, gamma-energies, methods of analysis 

and the results of quality control were presented in our 

earlier publications concerning the chemical elements 

of human bones [6-14, 16-20]. 

Computer Programs and Statistic 

A dedicated computer program of INAA-SLR mode 

optimization was used [75]. Using the Microsoft Office 

Excel program to provide a summary of statistical 

results, the arithmetic mean, standard deviation, and 

standard error of mean were calculated for Ca and P 

mass fractions and Ca/P mass fraction ratio obtained. 

The reliability of difference in the results between all 

age groups and between males and females was 

evaluated by Student’s parametric t-test. For the 
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estimation of the Pearson correlation coefficient 

between the Ca and P mass fractions the Microsoft 

Office Excel program was also used. 

RESULTS 

Table 1 shows INAA-SLR results for Ca and P mass 

fractions (g/kg, dry mass basis) in ten sub-samples of 

the standard reference material NIST SRM1486 bone 

meal and certified reference material IAEA H-5 animal 

bone compared to certified values. 

Table 2 depicts our data for mean values (mean ± 

standard error of mean) of Ca and P mass fractions 

and Ca/P mass fraction ratio in the teeth roots of 

healthy women and men from 16 to 55 years in 

subgroups of 5 years. 

In order to estimate the effect of age on the 

investigated parameters we used also two combined 

groups: one with young people, 16-35 years, and one 

with older people, 36-55 years, because in our previous 

study was found that Ca and P mass fractions in 

Table 1: Instrumental Neutron Activation Analysis Data of Ca and P Mass Fractions (g/kg, Dry Mass Basis) in the CRM 
IAEA H-5 Animal Bone and SRM NIST 1486 Bone Meal Reference Materials Compared to Certified Values 

Element 
CRM IAEA H-5 
certified values 

This work results 
(n=10) 

SRM NIST 1486 
certified values 

This work results 
(n=10) 

 Mean Type Mean±SD Mean Type Mean±SD 

Ca 212 C 208±2 266 C 271±8 

P 102 C 94.3±0.8 123 C 119±3 

Mean –arithmetic mean, SD – standard deviation, C - certified values. 

 

Table 2: Mean Values (M±SEM) of Ca and P Mass Fractions and Ca/P Mass Fraction Ratio in the Intact Roots of 

Permanent Teeth Depending on Age (g/kg, Dry Mass Basis) 

Female Male Age, 
years n Ca P Ca/P n Ca P Ca/P 

16-20 5 280±15* 153±3 1.84±0.10 5 283±27 145±12 1.97±0.08* 

21-25 4 291±42 177±27 1.65±0.10 5 301±24 171±12 1.75±0.04 

26-30 4 291±25 151±10 1.95±0.19 5 247±34 131±18 1.88±0.09 

31-35 5 336±18 171±12 1.98±0.15 7 247±17 130±12* 1.92±0.08 

36-40 4 285±23 154±9 1.84±0.05 5 280±14 148±10 1.92±0.10 

41-45 5 254±5** 133±11* 1.97±0.19 8 286±24 155±15 1.87±0.06 

46-50 6 303±18 146±6 2.08±0.14 5 268±12 151±11 1.80±0.08 

51-55 5 264±12** 147±7 1.80±0.05 6 272±24 155±13 1.77±0.09 

Mean –arithmetic mean, SEM – standard error of mean, * p<0.05 and ** p<0.01, Student’s t-test (compared to data for age group 31-35 years of females and 21-25 
years of males, respectively). 

 

Table 3: Effect of Age on Mean Values (M±SEM) of Ca and P Mass Fractions (g/kg, Dry Mass Basis) and Ca/P Mass 

Fraction Ratio in the Intact Roots of Permanent Teeth of Healthy Humans 

Female Male 

Parameter 16-35 year  
n=18 

36-55 year 
n=20 

p  

Student’s  
t-test 

16-35 year  
n=22 

36-55 year 
n=24 

p  

Student’s  
t-test 

Ca 300±12 277±8 N.S. 266±13 278±10 N.S. 

P 163±7 145±4 p 0.05 143±7 152±6 N.S. 

Ca/P 1.85±0.07 1.94±0.06 N.S. 1.88±0.04 1.84±0.04 N.S. 

M - arithmetic mean, SEM – standard error of mean, N.S. - not significant. 
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different bones begin to decrease after 35 years [19, 

20]. For female and male, results are shown in Table 3.  

All data for female and male separately were used 

to detect if there are any differences related to gender 

in three age groups 16-35, 36-55, and 16-55 years 

(Table 4). In the right column of this Table there is 

additional information concerning the same parameters 

for female and male together in each age group.  

Comparison of reference data with our results for 

Ca and P mass fractions as well as for Ca/P mass 

fraction ratio is shown in Tables 5 to 7, respectively. All 

reference data for Ca and P are given in Tables 5 and 

6 on dry mass basis. Some values for Ca and P mass 

fraction in Table 5 and 6 were not given by the authors 

on dry mass basis but were calculated by us using the 

median values of water and ash content in the dentine, 

10% and 72% respectively, taken from reference data 

[54, 67, 76-79]. Some values for Ca/P ratio shown in 

Table 7 were also calculated by us using the mean of 

Ca and P mass fraction reported by the same authors 

(Table 5 and 6).  

DISCUSSION 

The means for Ca and P mass fractions in ten sub-

samples of the IAEA H-5 animal bone and NIST 

SRM1486 bone meal reference materials determined 

by INAA-SLR were in a good agreement with mean 

values of the certificates (Table 1). Good agreement 

with the certified data of CRM indicated an acceptable 

accuracy of the results obtained in the study of Ca and 

P mass fractions in teeth roots presented in Tables 2-4. 

The Ca mass fraction in tooth root(s) of female 

increased in the second to fourth decades and reached 

a maximum at about the age of 33 years (Table 2). In 

the period of life from 30 to 35 years the Ca mass 

fraction was 1.2 and 1.3 times higher than in teeth 

roots of females aged 16-20 and 51 to 55 years, 

respectively and this differences were statistically 

significant. The same tendency of age-dependency 

was found for P mass fraction in female teeth roots. 

The Ca and P mass fraction in tooth root(s) of male 

reached a maximum at about the age of 23 years, i.e. 

ten years earlier than in tooth root(s) of female (Table 

2). However, the statistical significance of this 

maximum was not confirmed. The means of Ca/P mass 

fraction ratio were maintained in the range 1.65-2.08 in 

female teeth roots and 1.75-1.97 in male teeth roots 

and did not change with age.  

A tendency for reduced Ca and P mass fraction by 

age was observed in the comparison between two 

combined age groups (15-35 and 36-55 years) of 

females (Table 3). In spite of the fact that statistically 

significant differences (p 0.05) were only detected in P 

mass fraction, this tendency and data presented in 

Table 2 suggested that relative losses of Ca and P in 

female teeth roots develop after 35 years of age.  

Significant differences on the investigated 

parameters related to gender were not found in all age 

groups (Table 4), however, it should be noted that in 

the period of life from 16 to 35 years the mean values 

of Ca and P mass fractions in female teeth roots were 

13-14% higher than in teeth roots of males. 

For almost lack of reported data of chemical 

element contents in tooth root(s) we compared our 

results with published data on tooth dentin. It was 

acceptable because a tooth root mainly consists of

Table 4: Effect of Gender on Mean Values (M±SEM) of Ca and P Mass Fractions (g/kg, Dry Mass Basis) and Ca/P Mass 

Fraction Ratio in the Intact Roots of Permanent Teeth of Healthy Humans 

Gender Age group 

years 
Parameter 

Females Males 

p 

Student’s t-test 

Females and males 

(combined) 

Ca 300±12 266±13 N.S. 278±10 

P 163±7 143±7 N.S. 150±6 16-35 

Ca/P 1.85±0.07 1.88±0.04 N.S. 1.87±0.04 

Ca 277±8 278±10 N.S. 278±7 

P 145±4 152±6 N.S. 149±4 36-55 

Ca/P 1.94±0.06 1.84±0.04 N.S. 1.88±0.04 

Ca 286±7 272±8 N.S. 278±6 

P 152±4 148±5 N.S. 149±3 16-55 

Ca/P 1.91±0.05 1.86±0.03 N.S. 1.88±0.03 

M - arithmetic mean, SEM – standard error of mean, N.S. - not significant. 
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Table 5: Reference Data of Ca Mass Fraction (g/kg, Dry Mass Basis) in Dentin (or Root) of Sound Permanent Teeth 

Ca mass fraction 

Reference Method n 
Age 

years 

Treatment 

of 

samples 

Sample 
M±SD 

or range of M 

Range of individual 
results 

[22] Chem - 14 Ash, AD Dentin 278 - 

[23] Chem 1 15 AD Dentin 292 - 

[24] Chem 1 Children PF, F, Ash, AD Dentin 270 - 

[25] Chem 20 Adult PF, F, Ash, AD Dentin 262±3 - 

[26] Chem 6 17–41 PF, Ash, AD Dentin 278 263 – 288 

[27] Chem 52 M34 PF, Ash, AD Dentin 265 253 – 279 

[28] Chem 13 Adult PF, AD Dentin 273 - 

[29] Chem 50 Adult Ash, AD Dentin 264 - 

[30] Chem 1 44 PF, Ash, AD Dentin 275 248 – 314 

[31] Chem - - - Dentin 309 - 

[32] Chem 28 11–-60 PF, Ash, AD Dentin 293±1 - 

[33] Chem - Adult PF, Ash, AD Dentin 267 - 

[34] Chem 20 Adult PF, Ash, AD Dentin 268 –302 - 

[35] Chem - 17–21 AD Dentin 270 - 

[36] Chem 96 Adult PF, Ash, AD Dentin 245 – 271 - 

[37] Chem - 15–30 Ash, AD Dentin 312 – 367 - 

[38] Chem 6 10–12 AD Dentin 259 246 – 270 

[39] GAA 15 14–16 F, D Dentin 282±12 - 

[40] EMPA - 15–30 PF, AD Dentin 386 ± 30 - 

[41] Chem - - - Dentin 313 - 

[42] EMPA - Adult Em, P Dentin - 333 – 344 

[43] INAA 8 Adult D Dentin 262±15 - 

[44] INAA 175 10–90 F, D Dentin 262 – 274 - 

[45] INAA - Adult D Dentin 260±15 - 

[46] PIXE 1 Adult P Dentin 300 - 

[48] INAA 25 <14 D Dentin 291±11 - 

[49] Chem 18 7–18 - Dentin 264±21 - 

[50] PIXE 30 Adult P Dentin 347±22 - 

[51] EMPA - Children FF, Em, P Dentin - 150 – 221 

[52] Chem 7 Adult Ash, AD Dentin 309±52 - 

[54] - - - - Dentin 392 - 

[56] EMPA 34 Adult P Dentin 113±17 - 

[57] PIXE 6 Adult - Dentin 356 - 

  9 Adult - Dentin 353 - 

[58] AAS - Adult - Dentin 142 - 

[59] LIBS 1 Adult - Dentin 66 - 

[60] EMPA 3 Adult - Dentin 57.7±18.3 - 

[61] EMPA 15 Adult F, D, AD Dentin 327 ± 37 - 

[62] LAICPMS 11 14–77 P, CC Dentin 321 – 343 - 

[21] AAS 155 18–34 D, AD Root 63.1±10.0 46.4 –78.4 
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(Table 5). Continued. 

Ca mass fraction 

Reference Method 
n 

 

Age 

years 

Treatment 

of 

samples 

Sample 
M±SD 

or range of M 

Range of individual 
results 

[64] EMPA 7 Adult PF Dentin 304±7 - 

[65] INAA 10 Adult F Dentin 238±20 206 – 277 

[66] INAA 9 Adult F Dentin 290±27 238 – 324 

[67] INAA 30 Adult F, D Dentin 256 ±11 - 

  30 Adult G Dentin 276 ±11 - 

[68] ICP-AES 6 Adult F, AD Dentin 224±4 - 

[69] ICP-MS 80 Adult AD Dentin 237±41 - 

This work INAA 84 16–58 Intact Root 278±49 150 – 418 

All references (n=46) Median of means Range of means 

 276 57.7 – 392 

 “-“ – no information, Chem – chemical method, GAA – gamma activation analysis, EMPA – electron microprobe analysis, INAA – instrumental neutron activation 
analysis, PIXE – proton induced X-ray emission, AAS – atomic absorption spectrophotometry, LIBS – laser-induced breakdown spectroscopy, LAICPMS – laser 
ablation ICP-MS, ICP-AES – inductively coupled plasma atomic emission spectrometry, ICP-MS – inductively coupled plasma mass spectrometry, Ash. – ashing, AD 
– acid digestion, PF – pulp (fat, protein) free, F – flotation (washing), D – drying at high temperature, Em – embedding in balsam or plastic, P – polishing, FF – fixation 
by formalin, CC – carbon coating, G –grinding. 

dentin. As it was shown in Table 5 there was a 

coincidence between our mean value of Ca mass 

fraction in tooth root(s), 278±49 (SD) g/kg on dry mass 

basis, and the median reference value, 276 g/kg on dry 

mass basis. Our mean value for P mass fraction, 

149±29 (SD) g/kg on dry mass basis, was also close to 

the median reference one, 141 g/kg on dry mass basis 

(Table 6).  

The median reference value for Ca/P mass fraction 

ratio in dentin, 2.05, was lower than the stoichiometric 

value for hydroxyapatite, 2.15, but higher than ours for 

roots, 1.88±0.23 (SD). The differences were due to the 

presence of organic matrix in dentin, which increased 

the P mass fraction and decreased the Ca/P mass 

fraction ratio in dentin, respectively. Particularly it was 

concern the teeth roots because they included such 

non-mineralized component of tooth as the pulp. 

Standard deviations found for Ca and P mass 

fractions in tooth root(s) were respectively large but laid 

in the same level as some published data for dentin 

(Tables 5 and 6). This was the consequence of the 

very wide individual variation in Ca and P mass 

fractions in intact roots (Tables 5 and 6).  

The lower standard deviations obtained for Ca/P 

mass fraction ratio (Table 7) than for Ca and P mass 

fraction separately were due to the strong correlation 

between Ca and P mass fractions. This correlation for 

males and females aged 16 to 35 years was r=0.951 

(p<0.0001) and r=0.627 (p<0.001), respectively. By 

aging the correlation becomes lower. So, for males and  

 

females aged 36 to 55 years, the respective values 

were r=0.846 (p<0.0001) and r=0.497 (p<0.01).  

Tables 5-7 present a very wide range for Ca and P 

mass fractions and Ca/P mass fraction ratio. These 

values can not be explained only on the fact that 

various investigators have used dentin from the sound 

permanent teeth of different type and from different part 

of teeth (crowns or roots). We consider that other 

reasons account for this. The majority of data shown in 

these Tables were based upon techniques in which the 

dentin sample was subjected to various treatments in 

order to remove organic components by washing in 

different solvents, or depleting the whole organic matrix 

by dry ashing. These treatments lead to 

miscalculations of the inorganic component of dentin. 

For example, according to Pellegrino and Biltz [80] 

when organic components were removed from bone by 

chloroform-ethanol mixtures, Ca was removed too. 

Other evidence [71, 72, 81-83] shows that upon dry 

ashing a great amount of minerals and other biological 

materials are lost. 

Information from other sources referring to the 

impact of age on the Ca and P mass fraction in dentin 

is very limited and contradictory. The evidence 

presented by Derise et al. [44] demonstrated the slight 

increase of Ca content in dentin of permanent teeth 

extracted from males and females ages 10 to 25 years. 

Arany et al. [62] reported the inverse Pearson’s 

correlation between macro elements in dentin and age. 

In period of life from 14 to 77 years the correlation
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Table 6: Reference Data of P Mass Fraction (g/kg, Dry Mass Basis) in Dentin (or Root) of Sound Permanent Teeth 

P mass fraction 

Reference Method 
n 

 

Age 

years 

Treatment 

of 

samples 

Sample M±SD 

or range of M 

Range of individual 
results 

[22] Chem - 14 Ash, AD Dentin 138 - 

[23] Chem 1 15 AD Dentin 141 - 

[24] Chem 1 Children PF, F, Ash, AD Dentin 131 - 

[25] Chem 20 Adult PF, F, Ash, AD Dentin 127±5 - 

[26] Chem 6 17– 41 PF, Ash, AD Dentin 138 129 – 145 

[27] Chem 52 M34 PF, Ash, AD Dentin 127 121 – 134 

[28] Chem 13 Adult PF, AD Dentin 130 - 

[29] Chem 50 Adult Ash, AD Dentin 131 - 

[30] Chem 1 44 PF, Ash, AD Dentin 132 108 – 162 

[31] Chem - - - Dentin 183 - 

[32] Chem 28 11–-60 PF, Ash, AD Dentin 140±0.4 - 

[33] Chem - Adult PF, Ash, AD Dentin 129 - 

[34] Chem 20 Adult PF, Ash, AD Dentin 125 – 132 - 

[35] Chem - 17–21 AD Dentin 130 - 

[36] Chem 96 Adult PF, Ash, AD Dentin 116 – 126 - 

[37] Chem - 15–30 Ash, AD Dentin 157 – 179 - 

[38] Chem 6 10–12 AD Dentin 122 115 – 128 

[39] RNAA 15 14–16 F, D Dentin 135±28 - 

[40] EPMA - 15–30 PF, AD Dentin 187±32 - 

[41] Chem - - - Dentin 150 - 

[42] EMPA - Adult Em, P Dentin - 156 – 178 

[44] Chem 175 10–90 F, D Dentin 127 – 135 - 

[46] PIXE 1 Adult P Dentin 211 - 

[48] INAA 25 <14 D Dentin 141±10 - 

[49] Chem 18 7–18 - Dentin 164±51 - 

[50] PIXE 30 Adult P Dentin 156±20 - 

[51] EMPA - Children FF, Em, P Dentin - 79.9 – 106 

[52] Chem 7 Adult Ash, AD Dentin 178±46 - 

[54] - - - - Dentin 191 - 

[55] INAA 244 Adult - Dentin 208±191 - 

[56] EMPA 34 Adult P Dentin 66±17 - 

[57] PIXE 6 Adult - Dentin 156 - 

[60] EMPA 3 Adult - Dentin 48.9±1.1 - 

[61] EMPA 15 Adult F, D, AD Dentin 162 ± 27 - 

[62] LAICPMS 11 14–77 P, CC Dentin 149 – 161 - 

[64] EMPA 7 Adult PF Dentin 148±3 - 

[67] INAA 30 Adult F, D Dentin 140 ±6 - 

  30 Adult G Dentin 136 ±6 - 

[68] ICP-AES 6 Adult F, AD Dentin 107±7 - 

[69] ICP-MS 80 Adult AD Dentin 127±11 - 

This work INAA 84 16–58 Intact Root 149±29 79 – 237 

All references (n=40) Median of means Range of means 

 141 48.9 – 211 

 “-“ – no information, Chem – chemical method, RNAA – radiochemical neutron activation analysis, EMPA – electron microprobe analysis, INAA – instrumental 
neutron activation analysis, PIXE – proton induced X-ray emission, LAICPMS – laser ablation ICP-MS, ICP-AES – inductively coupled plasma atomic emission 
spectrometry, ICP-MS – inductively coupled plasma mass spectrometry, Ash. – ashing, AD – acid digestion, PF – pulp (fat, protein) free, F – flotation (washing), D – 
drying at high temperature, Em – embedding in balsam or plastic, P – polishing, FF – fixation by formalin, CC – carbon coating, G –grinding. 
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Table 7: Reference Data of Ca/P Mass Fraction Ratio in Dentin (or Root) of Sound Permanent Teeth 

Ca/P mass fraction ratio 

Reference Method n 
Age 

years 

Treatment  

of  
samples 

Sample M±SD 

or range of M 

Range of individual 

results 

[22] Chem - 14 Ash, AD Dentin 2.01 - 

[23] Chem 1 15 AD Dentin 2.07 - 

[24] Chem 1 Children PF, F, Ash, AD Dentin 2.07 - 

[25] Chem 20 Adult PF, F, Ash, AD Dentin 2.05 - 

[26] Chem 6 17–41 PF, Ash, AD Dentin 2.03 2.03 – 2.04 

[27] Chem 52 M34 PF, Ash, AD Dentin 2.08 2.01 – 2.25 

[28] Chem 13 Adult PF, AD Dentin 2.10 - 

[29] Chem 50 Adult Ash, AD Dentin 2.03 - 

[30] Chem 1 44 PF, Ash, AD Dentin 2.08 1.84 – 2.29 

[31] Chem - - - Dentin 1.69 - 

[32] Chem 28 11–-60 PF, Ash, AD Dentin 2.1±0.1 - 

[33] Chem - Adult PF, Ash, AD Dentin 2.04 - 

[34] Chem 20 Adult PF, Ash, AD Dentin 2.19 – 2.28 - 

[35] Chem - 17–21 AD Dentin 2.08 - 

  - 17–21 Ash, AD Dentin 2.01 - 

[36] Chem 96 Adult PF, Ash, AD Dentin 1.94 – 2.29 - 

[37] Chem - 15–30 Ash, AD Dentin 1.92 – 2.14 - 

[38] Chem 6 10–12 AD Dentin 2.14 2.04 – 2.17 

[39] RNAA 15 14–16 F, D Dentin 2.10 - 

[40] EPMA - 15–30 PF, AD Dentin 2.12±0.2 - 

[41] Chem - - - Dentin 2.09 - 

[42] EMPA - Adult Em, P Dentin - 1.89 – 2.28 

[44] INAA 175 10–90 F, D Dentin ~2.05 - 

[46] PIXE 1 Adult P Dentin 1.42 - 

[47] EMPA 2 Adult Em, P Dentin - 2.0 – 2.1 

[48] INAA 25 <14 D Dentin 2.06 - 

[49] Chem 18 7–18 - Dentin 1.61 - 

[50] PIXE 30 Adult P Dentin 2.30±0.18 - 

[51] EMPA - Children FF, Em, P Dentin - 1.88 – 2.08 

[52] Chem 7 Adult Ash, AD Dentin 1.74 - 

[53] PIXE 1 71 P Dentin - 1.0 – 2.5 

[54] - - - - Dentin 2.05 - 

[56] EMPA 34 Adult P Dentin 1.71 - 

[57] PIXE 6 Adult - Dentin 2.28 - 

[60] EMPA 3 Adult - Dentin 1.16±0.11 - 

[61] EMPA 15 Adult F, D, AD Dentin 2.02 - 

[62] LAICPMS 11 14–77 P, CC Dentin 2.17±0.26 - 

[63] XRF 32 Adult - Dentin - 2.85 – 3.35 

[64] EMPA 7 Adult PF Dentin 2.08±0.06 - 

[67] INAA 30 Adult F, D Dentin 1.83 - 

  30 Adult G Dentin 2.25 - 

[68] ICP-AES 6 Adult F, AD Dentin 2.08±0.05 - 

[69] ICP-MS 80 Adult AD Dentin 1.84 - 

This work INAA 84 16–58 Intact Root 1.88±0.23 1.40 – 2.70 

All references (n=42) Median of means Range of means 

 2.05 1.16 – 2.30 

“-“ – no information, Chem – chemical method, RNAA – radiochemical neutron activation analysis, EMPA – electron microprobe analysis, INAA – instrumental 
neutron activation analysis, PIXE – proton induced X-ray emission, LAICPMS – laser ablation ICP-MS, XRF – X-ray fluorescence analysis, ICP-AES – inductively 
coupled plasma atomic emission spectrometry, ICP-MS – inductively coupled plasma mass spectrometry, Ash. – ashing, AD – acid digestion, PF – pulp (fat, protein) 
free, F – flotation (washing), D – drying at high temperature, Em – embedding in balsam or plastic, P – polishing, FF – fixation by formalin, CC – carbon coating, G –
grinding. 
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coefficient for Ca and P was -0.278 (p 0.05) and -

0.424 (p<0.01), respectively. These results are very 

close to our data (Tables 2 and 3). However among the 

donors from Hsinchu City, Taiwan [69] no changes in 

Ca and P content in dentin of permanent teeth were 

found up to the age of 68.  

The influence of gender on the Ca and P mass 

fraction in dentin has also received little attention. 

Söremark and Lundberg [39] have found no significant 

variation with respect to gender. Derise [1973] and 

Derise et al. [44], however, have found significant 

gender-related differences in dentin for Ca mass 

fraction. The females had some higher levels of Ca as 

compared to males. The result obtained by Derise et al. 

agrees with our findings for females aged 16 to 35 

years (Table 4). 

In conclusion, INAA-LLR has been demonstrated to 

be an adequate analytical tool for the non-destructive 

determination of Ca and P mass fractions in the intact 

roots of human teeth. The mean values (M ± SD) of Ca 

and P mass fractions (g/kg, dry mass basis) as well as 

Ca/P mass fractions ratio in intact roots of apparently 

healthy 16 - 55 years old women and men were: 278 ± 

6, 149 ± 3, and 1.88 ± 0.03 respectively. A tendency for 

reduced Ca and P mass fraction in roots of female 

teeth after 35 years of age as well as for raised Ca 

mass fraction in female tooth root(s) up to 35 years of 

age as compared to male was observed. The mean 

values for Ca, P and Ca/P ratio in tooth root(s) were 

within a very wide range of reference data for dentin 

and close to their median. 

Data obtained in our study expands the knowledge 

of physiology of dental tissues and may be used for 

diagnostic, therapeutic and preventive purposes. 

Moreover, elemental analysis, including Ca content, of 

human teeth is often used in paleoanthropology for 

dietary and environment reconstruction to assess the 

social and economic status of human groups [85]. It is 

therefore evident that for all of these applications it is 

necessary to establish the normal levels and gender- 

and age-related changes of chemical elements in a 

large scale study of teeth. 
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