Corneal Infection Associated with Diabetes: A Case Study & Literature Review
DOI:
https://doi.org/10.12974/2309-6136.2020.08.1Keywords:
Diabetic keratopathy, Moxifloxacin, Homatropine, Hyperglycemia, Diabetes, Corneal abnormality.Abstract
A 54-year-old woman with a history of type 2 diabetes presented with concern for sudden eye pain, photophobia, and redness of the eye. History, physical examination and comprehensive lab tests, yielded a diagnosis of corneal keratopathy. She responded poorly to the initial management of moxifloxacin 5% and homatropine 2%. A multi-faceted approach involving strict glycemic control and antibiotic therapy was then adopted. Through dietary management and pharmacotherapy, the patient’s clinical disposition improved, highlighting the importance of glycemic control when managing diabetic keratopathy.
References
Kaji Y. Prevention of diabetic keratopathy. BMJ Publishing Group Ltd; 2005. https://doi.org/10.1136/bjo.2004.055541
Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development. Progress in molecular biology and translational science. 134: Elsevier 2015. p. 7- 23. https://doi.org/10.1016/bs.pmbts.2015.04.001
Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, et al. Effect of human corneal mesenchymal stromal cellderived exosomes on corneal epithelial wound healing. Investigative ophthalmology & visual science. 2018; 59(12): 5194-200. https://doi.org/10.1167/iovs.18-24803
Katzman LR, Jeng BH. Management strategies for persistent epithelial defects of the cornea. Saudi Journal of Ophthalmology. 2014; 28(3): 168-72. https://doi.org/10.1016/j.sjopt.2014.06.011
Wilson SE, Medeiros CS, Santhiago MR. Pathophysiology of corneal scarring in persistent epithelial defects after PRK and other corneal injuries. Journal of Refractive Surgery 2018; 34(1): 59-64. https://doi.org/10.3928/1081597X-20171128-01
Shaheen BS, Bakir M, Jain S. Corneal nerves in health and disease. Survey of ophthalmology 2014; 59(3): 263-85. https://doi.org/10.1016/j.survophthal.2013.09.002
Barsegian A, Lee J, Salifu MO, McFarlane SI. Corneal neuropathy: an underrated manifestation of diabetes mellitus. Journal of clinical endocrinology and diabetes 2018; 2(1).
Bikbova G, Oshitari T, Baba T, Bikbov M, Yamamoto S. Diabetic corneal neuropathy: clinical perspectives. Clinical Ophthalmology (Auckland, NZ) 2018; 12: 981. https://doi.org/10.2147/OPTH.S145266
He J, Bazan HE. Mapping the nerve architecture of diabetic human corneas. Ophthalmology 2012; 119(5): 956-64. https://doi.org/10.1016/j.ophtha.2011.10.036
Han SB, Yang HK, Hyon JY. Influence of diabetes mellitus on the anterior segment of the eye. Clinical interventions in aging 2019; 14: 53. https://doi.org/10.2147/CIA.S190713
Sitompul R. Corneal sensitivity as a potential marker of diabetic neuropathy. Acta Med Indones 2017; 49(2): 166-72.
Skarbez K, Priestley Y, Hoepf M, Koevary SB. A comprehensive review of the effects of diabetes on ocular health. Expert review of ophthalmology 2010; 5(4): 557-77. https://doi.org/10.1586/eop.10.44
Spadea L, Paroli MP. Laser refractive surgery in diabetic patients: a review of the literature. Clinical Ophthalmology (Auckland, NZ) 2012; 6: 1775. https://doi.org/10.2147/OPTH.S37384
Torricelli AA, Singh V, Santhiago MR, Wilson SE. The corneal epithelial basement membrane: structure, function, and disease. Investigative ophthalmology & visual science 2013; 54(9): 6390-400. https://doi.org/10.1167/iovs.13-12547
Wang F, Gao N, Yin J, Fu-Shin XY. Reduced innervation and delayed re-innervation after epithelial wounding in type 2 diabetic Goto-Kakizaki rats. The American journal of pathology 2012; 181(6): 2058-66. https://doi.org/10.1016/j.ajpath.2012.08.029
Ljubimov AV. Diabetic complications in the cornea. Vision research 2017; 139: 138-52. https://doi.org/10.1016/j.visres.2017.03.002
Shi L, Chen H, Yu X, Wu X. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation. Molecular and cellular biochemistry 2013; 383(1-2): 253-9. https://doi.org/10.1007/s11010-013-1773-9
Kaji Y. Diabetic eye disease. Diabetes and Aging-related Complications: Springer 2018. p. 19-29. https://doi.org/10.1007/978-981-10-4376-5_2
Lin SR, Aldave AJ, Chodosh J. Recurrent corneal erosion syndrome. British Journal of Ophthalmology 2019; 103(9): 1204-8. https://doi.org/10.1136/bjophthalmol-2019-313835
Shih KC, Lam KS, Tong L. A systematic review on the impact of diabetes mellitus on the ocular surface. Nutrition & diabetes. 2017; 7(3): e251-e. https://doi.org/10.1038/nutd.2017.4
Miller DD, Hasan SA, Simmons NL, Stewart MW. Recurrent corneal erosion: a comprehensive review. Clinical Ophthalmology (Auckland, NZ) 2019; 13: 325. https://doi.org/10.2147/OPTH.S157430
Reins RY, Hanlon SD, Magadi S, McDermott AM. Effects of topically applied vitamin D during corneal wound healing. PloS one 2016; 11(4): e0152889. https://doi.org/10.1371/journal.pone.0152889
Vieira-Potter VJ, Karamichos D, Lee DJ. Ocular complications of diabetes and therapeutic approaches. BioMed research international 2016. https://doi.org/10.1155/2016/3801570
El-Agamy A, Alsubaie S. Corneal endothelium, and central corneal thickness changes in type 2 diabetes mellitus. Clinical Ophthalmology (Auckland, NZ) 2017; 11: 481. https://doi.org/10.2147/OPTH.S126217
Sethia R, Patel A, Shah H, Patel R, Rajput T. A study of the correlation between HbA1c level & corneal thickness in diabetes mellitus patients 2018.
Gonzalez-Andrades M, Argüeso P, Gipson I. Corneal Anatomy. Corneal Regeneration: Springer 2019. p. 3-12. https://doi.org/10.1007/978-3-030-01304-2_1
Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Progress in retinal and eye research 2015; 49: 17- 45. https://doi.org/10.1016/j.preteyeres.2015.07.002
Shu DY, Hutcheon AE, Zieske JD, Guo X. Epidermal growth factor stimulates transforming growth factor-beta receptor type II expression in corneal epithelial cells. Scientific reports 2019; 9(1): 1-11. https://doi.org/10.1038/s41598-019-42969-2
Niu Y, Li Q, Ding Y, Dong L, Wang C. Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Advanced drug delivery reviews. 2019; 146: 190-208. https://doi.org/10.1016/j.addr.2018.06.002
Saghizadeh M, Kramer AA, Svendsen CN, Ljubimov AV. Concise review: stem cells for corneal wound healing. Stem Cells 2017; 35(10): 2105-14. https://doi.org/10.1002/stem.2667
Raghunathan VK, Thomas SM, Strøm P, Yañez-Soto B, Garland SP, Sermeno J, et al. Tissue and cellular biomechanics during corneal wound injury and repair. Acta biomaterials 2017; 58: 291-301. https://doi.org/10.1016/j.actbio.2017.05.051
Vaidyanathan U, Hopping GC, Liu HY, Somani AN, Ronquillo YC, Hoopes PC, et al. Persistent Corneal Epithelial Defects: A Review Article. Medical Hypothesis, Discovery, and Innovation in Ophthalmology 2019; 8(3): 163.
Wirostko B, Rafii M, Sullivan DA, Morelli J, Ding J. Novel therapy to treat corneal epithelial defects: a hypothesis with growth hormone. The ocular surface 2015; 13(3): 204-12. e1. https://doi.org/10.1016/j.jtos.2014.12.005
Hartford JB, Bian Y, Mathews PM, De Rojas J, Garg A, Rasool N, et al. Prevalence and risk factors of exposure keratopathy across different intensive care units. Cornea 2019; 38(9): 1124-30. https://doi.org/10.1097/ICO.0000000000001961
Chen HF, Yeung L, Yang KJ, Sun CC. Persistent corneal epithelial defect after pars plana vitrectomy. Retina 2016; 36(1): 148-55. https://doi.org/10.1097/IAE.0000000000000657
Asena L, Alkayid H, Altınörs DD. Corneal epithelial wound healing and management strategies. Plastic and Thoracic Surgery, Orthopedics and Ophthalmology: Springer 2018. p. 91-102. https://doi.org/10.1007/15695_2017_65
Utine CA, Durmaz CE, Koçak N. Corneal matrix repair therapy with the regenerating agent in neurotrophic persistent epithelial defects. International journal of ophthalmology 2017; 10(12): 1935.
Alshemmri W, Shawcross S, Yates J, Carley F, Brahma A, Hillarby MC. Dental Pulp Stem Cells for Corneal Surface Regeneration in Limbal Stem Cell Deficiency. Investigative Ophthalmology & Visual Science 2017; 58(8): 1382.
Zernii EY, Baksheeva VE, Yani EV, Philippov PP, Senin II. Therapeutic proteins for treatment of corneal epithelial defects. Current Medicinal Chemistry 2019; 26(3): 517-45. https://doi.org/10.2174/0929867324666170609080920
Versura P, Giannaccare G, Pellegrini M, Sebastiani S, Campos EC. Neurotrophic keratitis: current challenges and prospects. Eye and brain 2018; 10: 37. https://doi.org/10.2147/EB.S117261
Sacchetti M, Lambiase A. Neurotrophic factors, and corneal nerve regeneration. Neural regeneration research 2017; 12(8): 1220. https://doi.org/10.4103/1673-5374.213534
Luo R. Research progress of diabetic keratopathy. Chinese Journal of Experimental Ophthalmology 2018; 36(6): 472-6.
Vasudevan A. Development of Micropatterned, Mucoadhesive, Ocular Films for the Treatment of Diabetic Keratopathy: University of Pittsburgh 2020.
Priyadarsini S, Whelchel A, Nicholas S, Sharif R, Riaz K, Karamichos D. Diabetic keratopathy: Insights and challenges. Survey of Ophthalmology 2020. https://doi.org/10.1016/j.survophthal.2020.02.005
Sun H, Lee P, Yan C, Gao N, Wang J, Fan X, et al. Inhibition of soluble epoxide hydrolase 2 ameliorates diabetic keratopathy and impaired wound healing in mouse corneas. Diabetes 2018; 67(6): 1162-72. https://doi.org/10.2337/db17-1336
Gao F, Lin T, Pan Y. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts. Experimental and therapeutic medicine 2016; 12(3): 1705-10. https://doi.org/10.3892/etm.2016.3511
Zhao H, He Y, Ren YR, Chen BH. Corneal alteration and pathogenesis in diabetes mellitus. International Journal of Ophthalmology. 2019; 12(12): 1939. https://doi.org/10.18240/ijo.2019.12.17