Nitric Oxide Synthase Inhibition Protects Against RotenoneInduced Neurodegeneration in vivo
DOI:
https://doi.org/10.12974/2309-6179.2022.07.02Keywords:
Nitric oxide synthase, Rotenone, Neuroprotection, Apoptosis, Oxidative stress, Reactive oxygen speciesAbstract
Neuropathologic and motor features of Parkinson’s disease can be induced in rodents by the pesticide rotenone. In this study, we aimed to determine whether nitric oxide synthase inhibition by NG-nitro-L-arginine methyl ester (L-NAME) could prevent neurodegeneration and biochemical changes induced by rotenone in rat brain. For this purpose, rats received subcutaneous injections of rotenone (1.5 mg/kg) every other day for two consecutive weeks and were treated at the same time with L-NAME at doses of 10 or 20 mg/kg, intraperitoneally. Oxidative stress indictors, malondialdehyde, reduced glutathione, and nitric oxide as well as paraoxonase-1 (PON-1) activity in brain, and the concentration of the antiapoptotic protein B cell/lymphoma-2 (Bcl2) in striatum were determined. Motor strength and coordination was assessed using wire hanging and stair tests. Neuronal degeneration was evaluated using hematoxylin & eosin-stained brain sections. Results: L-NAME reduced, in a dose-dependent manner the increase in lipid peroxidation (malondialdehyde) and nitric oxide and restored reduced glutathione levels in brain of rotenone-treated rats. Additionally, L-NAME prevented the inhibition of paraoxonase-1 activity and the decrease in Bcl2 concentration induced by the pesticide. It also prevented motor impairments in a dose-dependent manner. Furthermore, L-NAME treatment ameliorated the neurodegenerative effects of rotenone, as shown by the decrease in degenerated neurons in striatum and cerebral cortex. The results of the present study suggest that rotenone mediates its neurotoxic effects, at least in part by nitric oxide-dependent mechanisms.
References
Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson's disease: a review of the evidence. Eur J Epidemiol 2011; 26 Suppl 1: S1-58. https://doi.org/10.1007/s10654-011-9581-6
Emamzadeh FN, Surguchov A. Parkinson's disease: biomarkers, treatment, and risk factors. Front Neurosci 2018; 12: 612. https://doi.org/10.3389/fnins.2018.00612
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: A clinicopathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55(3): 181-184. https://doi.org/10.1136/jnnp.55.3.181
Santens P, Boon P, Van Roost D, Caemaert J. The pathophysiology of motor symptoms in Parkinson's disease. Acta Neurol Belg. 2003; 103(3): 129-134.
Pankratz N, Foroud T. Genetics of Parkinson disease. Genet Med 2007; 9(12): 801-11. https://doi.org/10.1097/GIM.0b013e31815bf97c
Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 2020; 91: 795808. https://doi.org/10.1136/jnnp-2019-322338
Hancock DB, Martin ER, MayhewGM, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK. Pesticide exposure and risk of Parkinson's disease: a family-based case-control study. BMC Neurol 2008; 8: 6. https://doi.org/10.1186/1471-2377-8-6
Freire C, Koifman S. Pesticide exposure and Parkinson's disease: epidemiological evidence of association. Neurotoxicology 2012; 33: 947-971. https://doi.org/10.1016/j.neuro.2012.05.011
Hien PP, Gortnizka H, Kraemer R. Rotenone-potential and prospect for sustainable agriculture. Omonrice 2003; 11: 83- 92.
Sherer TB, Kim JH, Betarbet R, Greenamyre JT. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003; 179: 9-16. https://doi.org/10.1006/exnr.2002.8072
Cannon JR, Tapias VM, Na HM, Honick AS, Drolet RE, Greenamyre JT.A highly reproducible rotenone model of Parkinson's disease. Neurobiol Dis. 2009; 34(2): 279-290. https://doi.org/10.1016/j.nbd.2009.01.016
Zhang L, Dawson VL, Dawson TM. Role of nitric oxide in Parkinson's disease. Pharmacol Ther 2006; 109(1-2): 33-41. https://doi.org/10.1016/j.pharmthera.2005.05.007
Danielson SR, Andersen JK. Oxidative and nitrative protein modifications in Park inson's disease. Free Radic Biol Med 2008; 44: 1787-1794. https://doi.org/10.1016/j.freeradbiomed.2008.03.005
Förstermann U, Sessa WC. Nitric ox ide synthases: regulation and function. Eur Heart J 2012; 33: 829-37, 837a-837d. https://doi.org/10.1093/eurheartj/ehr304
Moncada S, Bolanos JP. N itric oxide, cell bioenergetics and neurodegeneration. J Neurochem 2006; 97(6): 1676-89. https://doi.org/10.1111/j.1471-4159.2006.03988.x
Brown GC. Nitric oxide and neuronal death. Nitric Oxide 2010; 23(3): 153-65. https://doi.org/10.1016/j.niox.2010.06.001
Wink DA, Feelisch M, Vodovotz Y, Fukuto J, Grisham MB. The chemical biology of nitric oxide. In: Reactive Oxygen Species in Biological Systems (G Colton). Kluwer Academic/Plenum Publishers, New York, NY, USA. 1999, pp. 245-91. https://doi.org/10.1007/0-306-46806-9_10
Abdel-Salam OME, Omara EA, El-Shamarka ME-S, Hussein JS. Nigrostriatal damage after systemic rotenone and/or lipopolysaccharide and the effect of cannabis. Comp Clin Pathol 2014; 23: 1343-1358 https://doi.org/10.1007/s00580-013-1788-3
Abdel-Salam OME, Youness ER, Khadrawy YA, Mohammed NA, Abdel-Rahman RF, Omara EA, et al. The effect of cannabis on oxidative stress and neurodegeneration induced by intrastriatal rotenone injection in rats. Comp Clin Pathol 2015; 24: 359-78. https://doi.org/10.1007/s00580-014-1907-9
Nair V, Turner GA. The thiobarbituric acid test for lipid peroxidation: structure of the adduct with malondialdehyde. Lipids 1984; 19: 804-805. https://doi.org/10.1007/BF02534475
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82(1): 70-7. https://doi.org/10.1016/0003-9861(59)90090-6
Archer S. Measurement of nitric oxide in biological models. FASEB J 1993; 7(2): 349-60. https://doi.org/10.1096/fasebj.7.2.8440411
Haagen L, Brock A. A new automated method for phenotyping arylesterase (EC 3.1.1.2) based upon inhibition of enzymatic hydrolysis of 4-nitrophenyl acetate by phenyl acetate. Eur J Clin Chem Clin Biochem 1992; 30(7): 391-5. https://doi.org/10.1515/cclm.1992.30.7.391
Baird AL, Meldrum A, Dunnett SB. The staircase test of skilled reaching in mice. Brain Res Bull 2001; 54(2): 243-50. https://doi.org/10.1016/S0361-9230(00)00457-3
Crawley JN. What's Wrong With My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice. Second Edition. 2017, Hoboken (New Jersey): John Wiley & Sons.
Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT. Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 2003; 23: 10756-10764 https://doi.org/10.1523/JNEUROSCI.23-34-10756.2003
Blesa J, Phani S, Jackson-Lewis V, Przedborski, S. Classic and new animal models of Parkinson's disease. J Biomed Biotechnol 2012, 845618. https://doi.org/10.1155/2012/845618
Casteilla L, Rigoulet M, Penicaud L. Mitochondrial ROS metabolism: Modulation by uncoupling proteins. IUBMB Life 2001; 52: 181-188. https://doi.org/10.1080/15216540152845984
Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Letters 592 (2018) 692-702. https://doi.org/10.1002/1873-3468.12964
Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 2003; 278(10): 8516-25. https://doi.org/10.1074/jbc.M210432200
Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial complex I. Biochim Biophys Acta 2006; 1757(5-6): 553-61. https://doi.org/10.1016/j.bbabio.2006.03.013
Watabe M, Nakaki T. Mitochondrial complex i inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Mol Pharmacol 2008; 74: 933-940. https://doi.org/10.1124/mol.108.048546
Bashkatova V, Alam M, Vanin A, Schmidt WJ. Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Exp Neurol 2004; 186(2): 235-41. https://doi.org/10.1016/j.expneurol.2003.12.005
Seadawy SAM, El-Shamarka ME-S, MA Mohamed, Abdel Salam OME, Abouelfadl DM. Modafinil alleviates rotenone- induced neurochemical changes and striatal nerurodegeneration via inhibiting oxidative stress and neuroinflammation. Egypt J Chem 2029; 63(12): 5027-5037. https://doi.org/10.21608/ejchem.2020.47734.2975
Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999; 5(12): 1403-9. https://doi.org/10.1038/70978
Watanabe H, Muramatsu Y, Kurosaki R, Michimata M, Matsubara M, Imai Y, et al. Protective effects of neuronal nitric oxide synthase inhibitor in mouse brain against MPTP neurotoxicity: an immunohistological study. Eur Neuropsychopharmacol 2004; 14(2): 93-104. https://doi.org/10.1016/S0924-977X(03)00065-8
He Y, Imam SZ, Dong Z, Jankovic J, Ali SF, Appel SH, et al. Role of nitric oxide in rotenone-induced nigro-striatal injury. J Neurochem 2003; 86(6): 1338-45. https://doi.org/10.1046/j.1471-4159.2003.01938.x
Madathil KS, Karuppagounder SS, Haobam R, Varghese M, Rajamma U, Mohanakumar KP. Nitric oxide synthase inhibitors protect against rotenone-induced, oxidative stress mediated parkinsonism in rats. Neurochem Int. 2013; 62(5): 674-83. https://doi.org/10.1016/j.neuint.2013.01.007
Abdel-Salam OME, Sleem AA, Youness ER, Mohammed NA, Omara EA, Shabana ME. Neuroprotective effects of the glutathione precursor N-acetylcysteine against rotenone- induced neurodegeneration. Reactive Oxygen Species 2019; 8(22): 231-244. https://doi.org/10.20455/ros.2019.845
Abdel-Salam OME, Morsy SMY, Youness ER, Yassen NN, Sleem AA. The effect of low dose amphetamine in rotenoneinduced toxicity in a mice model of Parkinson's disease. Iran J Basic Med Sci 2020; 23: 1207-1217.
Draganov DI, La Du BN. Pharmacogenetics of paraoxonases: a brief review. Naunyn Schmiedebergs Arch Pharmacol 2004; 369(1): 78-88. https://doi.org/10.1007/s00210-003-0833-1
Lee PC, Rhodes SL, Sinsheimer JS, Bronstein J, Ritz B. Functional paraoxonase 1 variants modify the risk of Parkinson's disease due to organophosphate exposure. Environ Int 2013; 56: 42-7. https://doi.org/10.1016/j.envint.2013.03.004
Narayan S, Liew Z, Paul K, Lee PC, Sinsheimer JS, Bronstein JM, et al. Household organophosphorus pesticide use and Parkinson's disease. Int J Epidemiol 2013; 42(5): 1476-85. https://doi.org/10.1093/ije/dyt170
Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases-a mechanistic approach. Toxicol. Lett 2-14; 230(2), 85-103 https://doi.org/10.1016/j.toxlet.2014.01.039
Nguyen SD, Sok DE. Preferential inhibition of paraoxonase activity of human paraoxonase 1 by negatively charged lipids. J Lipid Res 2004; 45(12): 2211-20. https://doi.org/10.1194/jlr.M400144-JLR200
Nguyen SD, Hung ND, Cheon-Ho P, Ree KM, Dai-Eun S. Oxidative inactivation of lactonase activity of purified human paraoxonase 1 (PON1). Biochim Biophys Acta 2009; 1790(3): 155-60. https://doi.org/10.1016/j.bbagen.2008.11.009
Surgucheva I, Shestopalov VI, Surguchov A. Effect of gamma-synuclein silencing on apoptotic pathways in retinal ganglion cells. J Biol Chem 2008; 283(52): 36377-85. https://doi.org/10.1074/jbc.M806660200
Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell 2010; 37(3): 299-310. https://doi.org/10.1016/j.molcel.2010.01.025
Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL 2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15(1): 49-63. https://doi.org/10.1038/nrm3722
Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol 2000; 166(1): 29-43. https://doi.org/10.1006/exnr.2000.7489
van der Heide LP, Smidt MP. 2013. The BcL-2 code to dopaminergic development and Parkinson's disease. Trends Mol Med 2013; 19(4): 211-6. https://doi.org/10.1016/j.molmed.2013.02.003
Abdel-Salam OME, Sleem AA, Youness ER, Mohammed NA,Omara EA. Neuroprotection by misoprostol against rotenone-induced neurotoxicity in rat brain. Asian Pac J Trop Med 2018; 11(1): 40-47. https://doi.org/10.4103/1995-7645.223532
Kim HJ, Park HJ, Park HK, Chung JH. Tranexamic acid protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Toxicology 2009; 262(2): 171-174. https://doi.org/10.1016/j.tox.2009.06.004
Song JX, Choi MYM, Wong KCK, Chung WWY, Sze SCW, Ng TB, Zhang KYB. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism. Chin Med 2012; 7(1): 1. https://doi.org/10.1186/1749-8546-7-1
Esposti MD, Hatzinisiriou I, McLennan H, Ralph S. Bcl-2 and mitochondrial oxygen radicals. New approaches with reactive oxygen species-sensitive probes. J Biol Chem 1999; 274(42): 29831-29837. https://doi.org/10.1074/jbc.274.42.29831 56] Eno CO, Zhao G, Olberding KE, Li C. The Bcl-2 proteins Noxa and Bcl-xL co-ordinately regulate oxidative stress- induced apoptosis. Biochem J 2012; 444(1): 69-78. https://doi.org/10.1042/BJ20112023
Amstad PA, Liu H, Ichimiya M, Berezesky IK, Trump BF, Buhimschi IA, Gutierrez PL. BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production. Redox Rep 2001; 6(6): 351-362. https://doi.org/10.1179/135100001101536535
Deng G, Su JH, Ivins KJ, Van Houten B, Cotman CW. Bcl-2 facilitates recovery from DNA damage after oxidative stress. Exp Neurol 1999; 159 (1): 309-318. https://doi.org/10.1006/exnr.1999.7145