Acute Effects of Cannabis sativa on Ischaemia/Reperfusion Injury in the Rat Brain

Authors

  • Omar M.E. Abdel-Salam Department of Toxicology and Narcotics, National Research Centre, Cairo, Egypt
  • Gehad Abdel Jaleel Department of Pharmacology, National Research Centre, Cairo, Egypt
  • Fatma A Morsy Department of Pathology, National Research Centre, Cairo, Egypt

DOI:

https://doi.org/10.12974/2309-6179.2017.05.06

Keywords:

Cannabis, brain ischemia and reperfusion, oxidative stress, neuroinflammation.

Abstract

We investigated the effect of Cannabis sativa extract on brain damage, oxidative stress and inflammation in rats with transient global cerebral ischaemia. Rats were subjected to bilateral common carotid artery (CCA) occlusion for 45 minutes followed by 4 h of reperfusion. Rats were treated with cannabis at a dose of 20 mg/kg (expressed as Δ9-THC) intraperitoneally (i.p) either before CCA, at time of reperfusion or after reperfusion. Alternatively, cannabis was given i.p. daily for 2 days before surgery. Markers of oxidative stress (malondialdehyde, reduced glutathione, nitric oxide) and the proinflammatory cytokine tumour necrosis factor-alpha (TNF-α) were determined in brain tissue. Histopathological evaluation was also done. Compared with the sham-treatment group, CCA occlusion resulted in increased brain malondialdehyde (54.5 ± 2.0 vs. 26.0 ± 1.45 nmol/g. tissue; p<0.05) and nitric oxide (75.2 ± 3.2 vs. 31.3 ± 3.0 mmol/g. tissue; p<0.05) contents along with decreased brain reduced glutathione (6.6 ± 0.14 vs. 8.28 ± 0.31mmol/g. tissue; p<0.05). There was also a pronounced rise in brain TNF-α concentrations (2248 ± 105 vs. 51.42 ± 3.21 pg/g. tissue; p<0.05). Cannabis sativa significantly increased reduced glutathione (by 30.3%-60.6%; p<0.05) and alleviated the increase in nitric oxide levels (by 51.5%- 58.5%; p<0.05) in the ischaemic brain tissue. Cannabis given before or at time of CCA occlusion significantly reduced brain TNF-α by 24.4% and 26.7%, respectively (1699 ± 80 and 1647 ± 54 vs. 2248 ± 105 pg/g. tissue; p<0.05). Histopathological examination of the cerebral cortex from rats subjected to CCA occlusion revealed gliosis, vacuolation and widespread neuronal degeneration. Cannabis given as a single dose 1h prior to CCA ligation or as 2 days pretreatment conferred protection against the ischaemic neuronal injury. It is concluded that in cerebral ischaemia the prior administration of cannabis exerted neuroprotective effects which could be accounted for by a decrease in nitric oxide and in the inflammatory response. 

References

United Nations Office on Drugs and Crime (UNODC). World drug report. Vienna, Austria: United Nations Publications; 2014.

Ashton CH. Pharmacology and effects of cannabis: a brief review. Br J Psychiat 2001; l 178: 101–106.

Huestis MA. Cannabis (Marijuana)—effects on human behavior and performance. Forensic Sci Rev 202; 14: 15.

Solowij N, Battisti R. The chronic effects of cannabis on memory in humans: a review. Curr Drug Abuse Rev 2008; 1: 81-98. https://doi.org/10.2174/1874473710801010081

Mandelbaum DE, de la Monte SM. Adverse structural and functional effects of marijuana on the brain: evidence reviewed. Pediatr Neurol 2017; 66: 12-20. https://doi.org/10.1016/j.pediatrneurol.2016.09.004

Kelley ME, Wan CR, Broussard B, Crisafio A, Cristofaro S, Johnson S, Reed TA, Amar P, Kaslow NJ5, Walker EF, Compton MT. Marijuana use in the immediate 5-year premorbid period is associated with increased risk of onset of schizophrenia and related psychotic disorders. Schizophr Res 2016; 171: 62-7. https://doi.org/10.1016/j.schres.2016.01.015

Pertwee RG, Ross RA. Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids 2002; 66: 101–121. https://doi.org/10.1054/plef.2001.0341

ElShohly MA. Chemical constituents of cannabis. In: Grotenherm en F, Russo E (eds) Cannabis and Cannabinoids. Pharmacology, Toxicology and Therapeutic Potential. Haworth Press Inc., New York, 2002, pp 27–36

Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9- tetrahydrocannabinol, cannabidiol and delta9- tetrahydrocannabivarin. Br J Pharmacol 2008; 153: 199–215. https://doi.org/10.1038/sj.bjp.0707442

Geller T, Loftis L, Brink DS. Cerebellar infarction in adolescent males associated with acute marijuana use. Pediatrics 2004; 113: e365-70. https://doi.org/10.1542/peds.113.4.e365

Finsterer J, Christian P, Wolfgang K. Occipital stroke shortly after cannabis consumption. Clin Neurol Neurosurg 2004; 106: 305-8. https://doi.org/10.1016/j.clineuro.2004.02.001

Mateo I, Pinedo A, Gomez-Beldarrain M, Basterretxea JM, Garcia-Monco JC. Recurrent stroke associated with cannabis use. J Neurol Neurosurg Psychiatry 2005; 76: 435-7. https://doi.org/10.1136/jnnp.2004.042382

Barber PA, Pridmore HM, Krishnamurthy V, Roberts S, Spriggs DA, Carter KN, Anderson NE. Cannabis, ischemic stroke, and transient ischemic attack: a case-control study. Stroke. 2013; 44: 2327-9. https://doi.org/10.1161/STROKEAHA.113.001562

Wolff V, Armspach JP, Lauer V, Rouyer O, Bataillard M, Marescaux C, Geny B. Cannabis-related stroke: myth or reality? Stroke. 2013; 44: 558-63. https://doi.org/10.1161/STROKEAHA.112.671347

Halladin NL. Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries. Dan Med J 2015; 62: B5054.

Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Clarendon Press, Oxford

Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 14: 1505-17. https://doi.org/10.1089/ars.2010.3576

Zhu Y, Saito K, Murakami Y, Asano M, Iwakura Y, Seishima M. Early increase in mRNA levels of pro-inflammatory cytokines and their interactions in the mouse hippocampus after transient global ischemia. Neurosci Lett 2006; 393: 122-6. https://doi.org/10.1016/j.neulet.2005.08.072

Vikman P, Ansar S, Henriksson M, Stenman E, Edvinsson L. Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Exp Brain Res 2007; 183: 499-510. https://doi.org/10.1007/s00221-007-1062-5

Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C, Danni O, Thiemermann C, Fantozzi R. Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 2006; 530: 70-80. https://doi.org/10.1016/j.ejphar.2005.11.049

Durmaz R, Inal M, Angin K, Atasoy MA, Altinişik M, Tel E. The effects of MK-801 and U-83836E on post-ischemic reperfusion injury in rat brain. Acta Neurobiol Exp (Wars) 1999; 59: 99-104.

Turner JC, Mahlberg PG. Separation of acid and neutral cannabinoids in Cannabis sativa L. using HPLC. In: Agurell S, DeweyWL, Willete RE (eds) The cannabinoids: chemical, pharmacologic, and therapeutic aspects. Academic Press, USA, 1984, pp 79–88 https://doi.org/10.1016/B978-0-12-044620-9.50010-5

Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H. Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 1994; 59: 383–8. https://doi.org/10.1016/0039-128X(94)90006-X

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82: 70–7. https://doi.org/10.1016/0003-9861(59)90090-6

Moshage H, Kok B, Huizenga JR, Jansen PL. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 1995; 41: 892–6.

Cnubben NH, Rietjens IM, Wortelboer H, van Zanden J, van Bladeren PJ. The interplay of glutathione-related processes in antioxidant defense. Environ Toxicol Pharmacol 2001; 10: 141–52. https://doi.org/10.1016/S1382-6689(01)00077-1

Piantadosi CA, Zhang J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke.1996; 27: 327-31. https://doi.org/10.1161/01.STR.27.2.327

Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, Kondo T, Scott RW, Chan PH. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 1999; 30: 1962-8. https://doi.org/10.1161/01.STR.30.9.1962

Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, Reola L, Carlson E, Epstein CJ. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 1998 15; 18: 8292-9.

Iadecola C, Zhang F, Xu X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol. 1995; 268: R286-92

Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33: 829–837, 837a– 837d.

Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 1999; 19: 5910-8.

Garcia-Bonilla L, Benakis C, Moore J, Iadecola C, Anrather J. Immune mechanisms in cerebral ischemic tolerance. Front Neurosci 2014 : 44. https://doi.org/10.3389/fnins.2014.00044

Buisson A, Plotkine M, Boulu RG. The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischaemia. Br J Pharmacol 1992; 106: 766-7. https://doi.org/10.1111/j.1476-5381.1992.tb14410.x

Duque GA, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol 2014; 5: 491

Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR, Vezzani A, Malva JO, Zimmer J. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2005; 25: 6734-44. https://doi.org/10.1523/JNEUROSCI.1510-05.2005

Abdel-Salam OME, Youness ER, Shaffee N (2014) Biochemical, immunological, DNA and histopathological changes caused by Cannabis Sativa in the rat. J Neurol Epidemiol 2: 6-16.

Abdel-Salam OME, Omara EA, El-Shamarka ME-S., Hussein JS. Nigrostriatal damage after systemic rotenone and/or lipopolysaccharide and the effect of cannabis. Comp Clin Pathol 2014; 23: 1343-58. https://doi.org/10.1007/s00580-013-1788-3

Sarafian TA, Magallanes JAM, Shau H, Tashkin D, Roth MD. Oxidative stress produced by marijuana smoke: an adverse effect enhanced by cannabinoids. Am J Respir Cell Mol Biol 1999; 20: 1286-93. https://doi.org/10.1165/ajrcmb.20.6.3424

Wolff V, Schlagowski AI, Rouyer O, Charles AL, Singh F, Auger C et al. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential mechanism involved in cannabisrelated stroke. Biomed Res Int 2015; 2015: 323706 https://doi.org/10.1155/2015/323706

Chan GC, Hinds TR, Impey S, Storm DR. Hippocampal neurotoxicity of Delta 9-tetrahydrocannabinol. J Neurosci 1998; 18: 5322-32.

Steel RW, Miller JH, Sim DA, Day DJ. Delta-9- tetrahydrocannabinol disrupts hippocampal neuroplasticity and neurogenesis in trained, but not untrained adolescent Sprague-Dawley rats. Brain Res 2014; 22: 1548: 12-19 https://doi.org/10.1016/j.brainres.2013.12.034

Chen J, Lee CT, Errico S, Deng X, Cadet JL, Freed WJ. Protective effects of Delta(9)-tetrahydrocannabinol against Nmethyl- d-aspartate-induced AF5 cell death. Brain Res Mol Brain Res 2005 ; 134: 215-25. https://doi.org/10.1016/j.molbrainres.2004.10.044

Gilbert GL, Kim HJ, Waataja JJ, Thayer SA. Delta9- tetrahydrocannabinol protects hippocampal neurons from excitotoxicity. Brain Res 2007; 1128: 61-9. https://doi.org/10.1016/j.brainres.2006.03.011

Abdel-Salam OME, El-Shamarka ME-S, Salem NA, Gaafar AE-DM. Effects of Cannabis sativa extract on haloperidolinduced catalepsy and oxidative stress in the mice. EXCLI J 2012; 11: 45–58.

Abdel-Salam OME, Youness ER, Khadrawy YA, Mohammed NA, Abdel-Rahman RF, Omara EA, Sleem AA. The effect of cannabis on oxidative stress and neurodegeneration induced by intrastriatal rotenone injection in rats. Comp Clin Pathol 2015; 24: 359-78. https://doi.org/10.1007/s00580-014-1907-9

Puffenbarger RA, Boothe AC, Cabral GA. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 2000; 29: 58-69. https://doi.org/10.1002/(SICI)1098- 1136(20000101)29:1<58::AID-GLIA6>3.0.CO;2-W

Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A. Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide. Glia 2003; 41: 161- 8. https://doi.org/10.1002/glia.10177

Correa F, Docagne F, Mestre L, Loría F, Hernangómez M, Borrell J, Guaza C. Cannabinoid system and neuroinflammation: implications for multiple sclerosis. Neuroimmunomodulation 2007; 14: 182-7. https://doi.org/10.1159/000110644

Downloads

Published

2017-02-27

How to Cite

Abdel-Salam, O. M. ., Jaleel, G. A., & Morsy, F. A. (2017). Acute Effects of Cannabis sativa on Ischaemia/Reperfusion Injury in the Rat Brain. Journal of Neurology and Epidemiology, 5, 25–34. https://doi.org/10.12974/2309-6179.2017.05.06

Issue

Section

Articles