Synthesis of Silver Nanoparticles Using Novel Chemical Solution Method as Antibacterial Applied on Cosmetic Cotton Balls
DOI:
https://doi.org/10.12974/2311-8792.2023.09.2Keywords:
Silver nanoparticles, Cosmetic cotton, Antibacterial applicationAbstract
This research aimed at preparing silver nanoparticles using the Novel chemical method, obtained as a black precipitate silver NPs. The sample was examined by using digital spectrometer device to find a degree of absorbency and its wavelength and particle by mathematical equation. Microbiology tests were carried out to determine the effectiveness of the sample in killing bacteria using the dilution method. After dissolving Silver NP`S in 5% acetic acid concentration, and covering the cotton balls with a solution of silver NPs to test the effectiveness of the sample using Two different concentrations of (0.5ml/g), and (0.25ml/g) and using two types of bacteria which causes skin blisters staphylococcus and streptococcus it is found that more concentration of the silver NPs solution has increased of killing both types of bacteria by staphylococcus (100%) and streptococcus (75%).
References
Sergeev GB. (2003). Cryochemistry of metal nanoparticles. J Nanopart Res 5: 529-37. https://doi.org/10.1023/B:NANO.0000006153.65107.42
Williams D. (2008). The relationship between biomaterials and nanotechnology. Biomaterials 29: 1737-8. https://doi.org/10.1016/j.biomaterials.2008.01.003
Li L-S, Hu J, Yang W, Alivisatos AP. (2001). Band gap variation of size and shape controlled colloidal CdSe quantum rods. Nano Lett 1: 349-51. https://doi.org/10.1021/nl015559r
Burleson DJ, Driessen MD, Penn RL. (2004). On the characterization of environmental nanoparticles. J Environ Sci Health A 39: 2707-53. https://doi.org/10.1081/ESE-200027029
Smith AM, Duan H, Rhyner MN, et al. (2006). A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys 8: 3895-903.6. https://doi.org/10.1039/b606572b
Nanda A, Saravanan M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine Nanotechnol Biol Med 5: 452-6. https://doi.org/10.1016/j.nano.2009.01.012
Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G. (2001). Bacteria as workers in the living factory: metalaccumulating bacteria and their potential for materials science. Trends Biotechnol 19: 15-20. https://doi.org/10.1016/S0167-7799(00)01514-6
D. Jain, H. K. Daima, S. Kechhwaha and S. L. Kothani, "Synthesis of Plant-Mediated Silver Nanoparticle Using Papaya Fruit Extract and Evaluation of Their Antimicro-bial Activity," Materials Science and Applications, Vol. 4, No. 3, 2009, p. 5573.
Henglein, "Physicochemical Properties of Small Metal Particles in Solution: 'Microelectrode' Reactions, Chemisorption, Composite Metal Particles, and the Atom-to- Metal Transition," Journal of Physical Chemistry, Vol. 97, No. 21, 1993, pp. 5457-5471. https://doi.org/10.1021/j100123a004
Y. A. Krutyakov, A. A. Kudringkii, A. Y. Olenim and G. V. Lisichkui, "Synthesis and Properties of Silver Nanopar- ticles: Advances and Prospects," Russian Chemical Re-views, Vol. 77, No. 3, 2008, pp. 233-257. https://doi.org/10.1070/RC2008v077n03ABEH003751
A. Pal, S. Shah and S. Devi, "Preparation of Silver, Gold and Silver-Gold Bimetallic Nanoparticles in W/O Mi-croemulsion
Containing TritonX-100," Colloids and Sur-faces: Physicochemical and Engineering Aspects, 302, No 1-3, 2007, pp. 483-487. https://doi.org/10.1016/j.colsurfa.2007.03.032
J. Kasthuri, S. Veerapandian and N. Rajendran, "Biologi-cal Synthesis of Silver & Gold Nanoparticles Using Apiin as Reducing Agent," Colloids and Surfaces B: Biointer-faces, Vol. 68, No. 1, 2009, pp. 55-60. https://doi.org/10.1016/j.colsurfb.2008.09.021
L. Balogh and D. A. Tomalia, "Poly(Amidoamine) Den- drimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters," Journal of the American Chemical Society, Vol. 120, No. 29, 1998, 7355-7356. https://doi.org/10.1021/ja980861w
K. Patel, S. Kapoor, D. P. Daul and T. Murherjee, Jour-nal of Chemical Sciences, Vol. 117, No. 1, 2005, pp. 53- 60. https://doi.org/10.1007/BF02704361
J. J. Zhu, X. H. Liao, X. W. Zaho and H. Y. Hem, "Prepa- ration of Silver Nanorods by Electrochemical Methods," Materials Letters, Vol. 49, No. 2, 2001, pp. 91-95. https://doi.org/10.1016/S0167-577X(00)00349-9
Y, G. Sun, B. Mayers, T. Herricks and Y. N. Xia, "Polyol Synthesis of Uniform Silver Nanowires," Nanoletters, Vol. 3, No. 7, 2003, pp. 955-960. https://doi.org/10.1021/nl034312m
Y. Xia, P. Yang, Y. Sun and Y. Wu, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applica- tions," Advanced Materials, Vol. 15, No. 5, 2003, pp. 353389. https://doi.org/10.1002/adma.200390087
Abou El-Nour KM, Eftaiha A, Al-Warthan A, Ammar RA. (2010). Synthesis and applications of silver nanoparticles. Arabian J Chem 3: 135-40. https://doi.org/10.1016/j.arabjc.2010.04.008
Cho K-H, Park J-E, Osaka T, Park S-G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51: 956-60. https://doi.org/10.1016/j.electacta.2005.04.071
Dura'n N, Marcato PD, Alves OL, et al. (2005). Mechanistic aspects of biosynthes is of silver nanoparticles by several Fusariumoxysporum strains. J Nanobiotechnol 3: 1-7. https://doi.org/10.1186/1477-3155-3-8
Barreiro E, Casas JS, Couce MD, et al. (2007). Synthesis and antimicrobial activities of silver (I) sulfany lcarboxylates. Structural isomers with identically or unequally coordinated Ag centers in an Ag4S4 ring. Dalton Trans 28: 3074-85. https://doi.org/10.1039/B702936E
Bragg P, Rainnie D. (1974). The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20: 883- 9. https://doi.org/10.1139/m74-135
George N, Faoagali J, Muller M. (1997). Silvazine_(silver sulfadiazine and chlorhexidine) activity against 200 clinical isolates. Burns 23: 493-5. https://doi.org/10.1016/S0305-4179(97)00047-8
Leaper DJ. (2006). Silver dressings: their role in wound management. Int Wound J 3: 282-94. https://doi.org/10.1111/j.1742-481X.2006.00265.x
Modak SM, Fox Jr CL. (1973). Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol 22: 2391-404. https://doi.org/10.1016/0006-2952(73)90341-9
Thomas V, Yallapu MM, Sreedhar B, Bajpai S. (2007). A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315: 389-95. https://doi.org/10.1016/j.jcis.2007.06.068
Chen X, Schluesener H. (2008). Nanosilver: a nanoproduct in medica l application. Toxicol Lett 176: 1-12. https://doi.org/10.1016/j.toxlet.2007.10.004
Chu C-S, McManus AT, Pruitt Jr BA, Mason Jr AD. (1988). Therapeutic effects of silver nylon dressings with weak direct current on Pseudomonas aeruginosa-infected burn wounds. J Trauma Acute Care Surg 28: 1488-92. https://doi.org/10.1097/00005373-198810000-00016
Gravante G, Caruso R, Sorge R, et al. (2009). Nanocrystallinesilver: a systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations. Ann Plast Surg 63: 201-5. https://doi.org/10.1097/SAP.0b013e3181893825
Monteiro DR, Gorup LF, Takamiya AS, et al. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34: 103-10. https://doi.org/10.1016/j.ijantimicag.2009.01.017
Bai J, Li Y, Du J, et al. (2007). One-pot synthesis of polyacrylamide-gold nanocomposite. Mater ChemPhys 106: 412-20. https://doi.org/10.1016/j.matchemphys.2007.06.021
Jung J, Oh H, Noh H, et al. (2006). Metal nanoparticle generation using a small ceramic heater with a local heating area. Aerosol Sci 37: 1662-70. https://doi.org/10.1016/j.jaerosci.2006.09.002
Kruis F, Fissan H, Rellinghaus B. (2000). Sintering and evaporation characteristics of gas-phase synthesis of sizeselected PbSnanoparticles. Mater Sci Eng 69: 329. https://doi.org/10.1016/S0921-5107(99)00298-6
Leela A, Vivekanandan M. (2008). Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7: 3162-5.
Mafune' F, Kohno JY, Takeda Y, et al. (2001). Formation of gold nanopartic les by laser ablation in aqueous solution of surfactant. J Phys Chem B 105: 5114-20. https://doi.org/10.1021/jp0037091
Nickel U, Castell AZ, Poppl K, Schneider S. (2000). A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir 16: 9087-97. https://doi.org/10.1021/la000536y
Shirtcliffe N, Nickel U, Schneider S. (1999). Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles. J Colloid Interface Sci 211: 122-9. https://doi.org/10.1006/jcis.1998.5980
Kowshik M, Deshmukh N, Vogel W, et al. (2002). Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. BiotechnolBioeng 78: 583-8. https://doi.org/10.1002/bit.10233
Gurav AS, Kodas TT, Wang L-M, et al. (1994). Generation of nanometersize fullerene particles via vapor condensation. Chem Phys Lett 218: 304-8. https://doi.org/10.1016/0009-2614(93)E1491-X
Magnusson MH, Deppert K, Malm J-O, et al. (1999). Gold nanoparticles: production, reshaping, and thermal charging. J Nanopart Res 1: 243-51.
Chen Y-H, Yeh C-S. (2002). Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles. Colloids Surf A Physicochem Eng Aspects 197: 133-9. https://doi.org/10.1016/S0927-7757(01)00854-8
Kabashin A, Meunier M. (2003). Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94: 7941-3. https://doi.org/10.1063/1.1626793
Mafune' F, Kohno JY, Takeda Y, et al. (2000). Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104: 9111-17. https://doi.org/10.1021/jp001336y
Sylvestre J-P, Kabashin AV, Sacher E, et al. (2004). Stabilization and size control of gold nanoparticles during laser ablation in aqueouscyclodextrins. J Am Chem Soc 126: 7176-7. https://doi.org/10.1021/ja048678s
Tsuji T, Iryo K, Nishimura Y, Tsuji M. (2001). Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablationefficiency (II). J Photochem Photobiol A Chem 145: 201-7. https://doi.org/10.1016/S1010-6030(01)00583-4
Tsuji T, Iryo K, Watanabe N, Tsuji M. (2002). Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202: 80-5. https://doi.org/10.1016/S0169-4332(02)00936-4
Tsuji T, Kakita T, Tsuji M. (2003). Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206: 314-20. https://doi.org/10.1016/S0169-4332(02)01230-8
Evanoff DD, Chumanov G. (2004). Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J PhysChem B 108: 1395762. https://doi.org/10.1021/jp0475640
Wiley B, Sun Y, Mayers B, Xia Y. (2005). Shape controlled synthesis of metal nanostructures: the case of silver. Chem A Eur J 11: 454-63. https://doi.org/10.1002/chem.200400927
Valizadeh H, Mohammadi G, Ehyaei R, et al. (2012). Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Pharmaz ie - Int J of Pharm Sci 67: 63-8.
Ahmad A, Mukherjee P, Senapati S, et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusariumoxysporum. Colloids Surf B Biointerfaces 28: 313-18. https://doi.org/10.1016/S0927-7765(02)00174-1
Shankar SS, Rai A, Ahmad A, Sastry M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachtaindica) leaf broth. J Colloid Interface Sci 275: 496-502. https://doi.org/10.1016/j.jcis.2004.03.003
Kowshik M, Ashtaputre S, Kharrazi S, et al. (2003). Extracellular synthesis of silver nanoparticles by a silvertolerant yeast strain MKY3. Nanotechnology 14: 95-106. https://doi.org/10.1088/0957-4484/14/1/321
Souza G, Marcato P, Duran N, Esposito E, eds. (2004). Utilization of Fusariumoxysporum in the biosynthes is of silver nanoparticles and its antibacterial activities. IX National Meeting of Environmental Microbiology, Curtiba, Brazil.
Joerger R, Klaus T, Granqvist C. (2000). Biologically produced s ilver carbon composite materials for optically functional thin film coatings. Adv Mater 12: 407-9. https://doi.org/10.1002/(SICI)15214095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O
Mukherjee P, Ahmad A, Mandal D, et al. (2001). Fungusmediated synthesis of silver nanoparticles and their immobilization in themycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1: 515-19. https://doi.org/10.1021/nl0155274
Thakkar KN, Mhatre SS, Parikh RY. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine Nanotechnol Biol Med 6: 257-62. https://doi.org/10.1016/j.nano.2009.07.002
Hussain I, Brust M, Papworth AJ, Cooper AI. (2003). Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19: 4831-5. https://doi.org/10.1021/la020710d
Lengke MF, Fleet ME, Southam G. (2007). Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23: 2694-9. https://doi.org/10.1021/la0613124
Albrecht MA, Evans CW, Raston CL. (2006). Green chemistry and the health implications of nanoparticles. Green Chem 8: 417-32. https://doi.org/10.1039/b517131h
Pissuwan D, Valenzuela SM, Cortie MB. (2006). Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol24: 62-7. https://doi.org/10.1016/j.tibtech.2005.12.004
Tan M, Wang G, Ye Z, Yuan J. (2006). Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling. J Lumin 117: 208. https://doi.org/10.1016/j.jlumin.2005.04.004
Kotthaus S, Gunther B, Hang R, Schafer H. (1997). Study ofisotropically conductive bondings filled with aggregates of nanosited Ag-particles. IEEE Trans Comp Pack Manuf Technol A 20: 15-20. https://doi.org/10.1109/95.558539
Cao G. (2004). Nanostructures and nanomaterials. London: Imperial College Press. https://doi.org/10.1142/p305
Zhang W, Wang G. (2003). Research and development for antibacterial materials of silver nanoparticle. New Chem Mater 31: 42-4.
Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G. (2001). Bacteria as workers in the living factory: metalaccumulating bacteria and their potential for materials science. Trends Biotechnol 19: 15-20. https://doi.org/10.1016/S0167-7799(00)01514-6
Hu L, Choi JW, Yang Y, et al. (2009). Highly conductive paper for energy-storage devices. Proc Natl Acad Sci USA 106: 21490-4. https://doi.org/10.1073/pnas.0908858106
Ahrari M, Karahan M, Hussain M, Nawab Y, Khan A and Shirazi A, Development of Anti-Bacterial and Anti-Viral Nonwoven Surgical Masks for Medical Applications, Tekstilec, , 2022; 65(2): 135-146. https://doi.org/10.14502/tekstilec.65.2022020