Polymeric Coatings for Drug Delivery by Medical Devices
DOI:
https://doi.org/10.12974/2311-8792.2021.07.4Keywords:
Drug delivery, Controlled release, Targeted deliveryAbstract
An analysis of the current landscape of therapeutics and delivery methods was conducted, aiming the field of drug delivery systems. Drug delivery biodistribution characteristics should be systematically understood, in order to maximize the function of these delivery systems. As a result, this review covers a history of the drug delivery systems, as well as the basic terminology associated with them, with a focus on the usage of polymers in the drug administration systems (particularly in form of coatings) and their application.
New trends in nanomaterials-based drug delivery systems, primarily for cancer treatment, were presented, involving a technology designed to maximize therapeutic efficacy of drugs by controlling their biodistribution profile.
There is a justified need to investigate drug delivery systems in form of thin films because, in comparation to bulk drug delivery system, which have a long and comprehensive history, there is still insufficient and fragmented understanding about the delivery of thin polymeric films, with research limited in general to very specific cases. Our efforts have been concentrated on these specifically polymeric drug delivery systems in the form of coatings. Understanding the dynamic changes that occur in a biodegradable polymeric thin film can aid in the prediction of the future performance of synthesized films designed to be used as implantable medical devices.
Extensive research is required to continuously develop new therapeutic systems in order to achieve an optimal concentration of a specific drug at its site of action for an appropriate duration.
References
Cristescu R, Popescu C, Popescu A, Grigorescu S, Mihailescu IN, Mihaiescu D, et al. Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation. Appl Surf Sci. 2009; 255(24): 9873-6. https://doi.org/10.1016/j.apsusc.2009.04.110
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018; 26(1): 64-70. https://doi.org/10.1016/j.jsps.2017.10.012
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015; 0(DEC): 286. https://doi.org/10.3389/fphar.2015.00286
Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014; 4(33): 17028-38. https://doi.org/10.1039/C3RA47370H
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017; 22(9): 1401. https://doi.org/10.3390/molecules22091401
Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr Drug Deliv. 2012; 9(4): 367-94. https://doi.org/10.2174/156720112801323053
Nayak AK, Ahmad SA, Beg S, Ara TJ, Hasnain MS. Drug delivery: present, past, and future of medicine In: Inamuddin, Asiri AM, Mohammad A, editors. Applications of Nanocomposite Materials in Drug Delivery. 1st ed. Woodhead Publishing; 2018. p. 990. ISBN 9780128137413 https://doi.org/10.1016/B978-0-12-813741-3.00012-1
Hasnain S, Ahmed SA, Alkahtani S, Milivojevic M, Kandar CC, Dhara AK, et al. Biopolymers for drug delivery. In: Nayak AK, Hasnain MS, editors. Advanced biopolymeric systems for drug delivery. Cham: Springer International Publishing; 2020. https://doi.org/10.1007/978-3-030-46923-8_1
Kapusetti G, Misra N, Singh V, Srivastava S, Roy P, Dana K, et al. Bone cement based nanohybrid as a super biomaterial for bone healing. J Mater Chem B. 2014; 2(25): 3984-97. https://doi.org/10.1039/C4TB00501E
Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. Int J Pharm. 1997; 154(2): 123-40. https://doi.org/10.1016/S0378-5173(97)00135-X
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001; 70(1-2): 1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
Banker GS, Rhodes CT, editors. Modern pharmaceutics. 4th ed. New York: Marcel Dekker, Inc.; 2002. xi, 838. ISBN 0- 8247-0674-9
Plotkin SL, Plotkin SA. A short history of vaccination. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, editors. Plotkin's Vaccines. 7th ed. Philadelphia: Elsevier; 2018. p. 1- 15e8. ISBN 978-0-323-35761-6. https://doi.org/10.1016/B978-0-323-35761-6.00001-8
Meyers MA. Happy accidents: Serendipity in modern medical breakthroughs. 1st ed. New York, NY: Arcade Publishing; 2011. 400 p. ISBN 978-1611453799
Hoffman A. The origins and evolution of "controlled" drug delivery systems. J Control Release. 2008; 132(3): 153-63. https://doi.org/10.1016/j.jconrel.2008.08.012
Simionovici M, Carstea A, Vladescu C. Cercetarea farmacologica si prospectarea medicamentelor. Bucharest: Editura Medicala; 1983.
Federal Food, Drug, and Cosmetic Act (FD&C Act)
[Internet].
[cited 2021 Oct 25]. Available from: https: //www.govinfo.gov/content/pkg/COMPS-973/pdf/COMPS- 973.pdf
Li X, Jasti BR. Design of controlled release drug delivery systems. McGraw-Hill Education; 2006. 435 p. ISBN 978- 0071417594
Jain KK, editor. Drug delivery systems. 3rd ed. New York, NY: Humana Press; 2020. XI, 316. ISBN 978-1-4939-9798-5
Wen H, Park K, editors. Oral controlled release formulation design and drug delivery : Theory to practice. 1st ed. New Jersey: Wiley; 2010. 376 p. ISBN 978-0-470-25317-5 https://doi.org/10.1002/9780470640487.ch1
Perrie Y, Rades T. FAST track: Pharmaceutics - drug delivery and targeting. 2nd ed. Pharmaceutical Press; 2012. 272 p. ISBN 978 0 85711 059 6
Griffith LG. Polymeric biomaterials. Acta Mater. 2000; 48(1): 263-77. https://doi.org/10.1016/S1359-6454(99)00299-2
Shi H, Ratner BD. Template recognition of protein-imprinted polymer surfaces. J Biomed Mater Res. 2000; 49(1): 1-11. https://doi.org/10.1002/(SICI)1097- 4636(200001)49:1<1::AID-JBM1>3.0.CO;2-9
Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002 Jan 17; 54(1): 3-12. https://doi.org/10.1016/S0169-409X(01)00239-3
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007; 32(8-9): 762-98. https://doi.org/10.1016/j.progpolymsci.2007.05.017
Parthasarathy M, Sethuraman S. Hierarchical characterization of biomedical polymers. In: Kumbar SG, Laurencin CT, Deng M, editors. Natural and Synthetic Biomedical Polymers, Elsevier Inc., USA; 2014. p. 32-42. https://doi.org/10.1016/B978-0-12-396983-5.00002-8
Pal D, Nayak AK. Interpenetrating polymer networks (IPNs): natural polymeric blends for drug delivery. In: Mishra M, editor. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, vol VI. Taylor & Francis Group, USA; 2015. p. 4120-30. https://doi.org/10.1081/E-EBPP-120051414
Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol. 2001; 5(4): 447-51. https://doi.org/10.1016/S1367-5931(00)00227-1
Heller J, Sparer R V., Zenter GM. Poly(ortho esters). In: Chasin M, Langer RS, editors. Biodegradable polymers as drug delivery systems. New York, NY: Marcel Dekker, Inc.; 1990. p. 347. ISBN 0-8247-8344-1
Ron E, Langer R. Erodible systems. In: Kydonieus AF, editor. Treatise on controlled drug delivery : fundamentals, optimization, applications. New York, NY: Marcel Dekker,Inc.; 1992. ISBN 0824785193
Ravi Kumar MN V., Kumar N. Polymeric controlled drugdelivery systems: Perspective issues and opportunities. Drug Dev Ind Pharm. 2001; 27(1): 1-30. https://doi.org/10.1081/DDC-100000124
Kumar V, Banker GS. Chemically-modified celldlosic polymers. Drug Dev Ind Pharm. 2008; 19(1-2): 1-31. https://doi.org/10.3109/03639049309038760
Prestwich GD, Luo Y. Novel biomaterials for drug delivery. Expert Opin Ther Pat. 2005; 11(9): 1395-410. https://doi.org/10.1517/13543776.11.9.1395
Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004; 303(5665): 1818-22. https://doi.org/10.1126/science.1095833
Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990; 1029(1): 91-7. https://doi.org/10.1016/0005-2736(90)90440-Y
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003; 2(5): 347-60. https://doi.org/10.1038/nrd1088
Perry CM, Brogden RN. Goserelin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in benign gynaecological disorders. Drugs. 1996; 51(2): 319-46. https://doi.org/10.2165/00003495-199651020-00009
Park K, Shalaby WSW, Park H. Biodegradable hydrogels for drug delivery. 1st ed. Boca Raton, FL: CRC Press; 1993. 262 p. ISBN 978-1566760041 https://doi.org/10.1201/9780429259098
Park J, Ye M, Park K. Biodegradable polymers for microencapsulation of drugs. Molecules. 2005; 10(1): 146- 61. https://doi.org/10.3390/10010146
Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe MJ, Couvreur P, et al. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther. 2002 Dec 1; 303(3): 928-36. https://doi.org/10.1124/jpet.102.039669
Van Den Mooter G, Maris B, Samyn C, Augustus P, Kinget R. Use of azo polymers for colon-specific drug delivery. J Pharm Sci. 1997; 86(12): 1321-7. https://doi.org/10.1021/js9702630
Bromberg LE, Ron ES. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev. 1998; 31: 197-221. https://doi.org/10.1016/S0169-409X(97)00121-X
Yuk H, Cho SH, Lee SH. pH/Temperature-Responsive Polymer Composed of Poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). Macromolecules 1997; 30(22): 6856-59. https://doi.org/10.1021/ma970725w
Liechty WB, Kryscio DR, Slaughter B V., Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010; 1: 149. https://doi.org/10.1146/annurev-chembioeng-073009-100847
Merlin JJP, Rajendra Prasad N, Shibli SMA, Sebeela M. Ferulic acid loaded Poly-d,l-lactide-co-glycolide nanoparticles: Systematic study of particle size, drug encapsulation efficiency and anticancer effect in non-small cell lung carcinoma cell line in vitro. Biomed Prev Nutr. 2012; 2(1): 69-76. https://doi.org/10.1016/j.bionut.2011.12.007
Majumdar D, Jung KH, Zhang H, Nannapaneni S, Wang X, Amin AR, et al. Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev Res. 2014; 7(1): 65-73. https://doi.org/10.1158/1940-6207.CAPR-13-0230
Zhang L, Chen Z, Yang K, Liu C, Gao J, Qian F. β-lapachone and paclitaxel combination micelles with improved drug encapsulation and therapeutic synergy as novel nanotherapeutics for NQO1-targeted cancer therapy. Mol Pharm. 2015; 12(11): 3999-4010. https://doi.org/10.1021/acs.molpharmaceut.5b00448
Dong PW, Wang XH, Gu YC, Wang YJ, Wang YJ, Gong CY, et al. Self-assembled biodegradable micelles based on starshaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surfaces A Physicochem Eng Asp. 2010; 358(1-3): 128-34. https://doi.org/10.1016/j.colsurfa.2010.01.037
Abdel-Mottaleb MMA. Biodegradable thymoquinone nanoparticles for higher therapeutic efficiency in murine colorectal cancer. Int J Pharm Pharm Res. 2016; 7(7): 436- 50.
Zhang J, Li S, An F-F, Liu J, Jin S, Zhang JC, et al. Selfcarried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale. 2015; 7(32): 13503-10. https://doi.org/10.1039/C5NR03259H
Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010; 351(1): 19-29. https://doi.org/10.1016/j.jcis.2010.05.022
Zheng XL, Kan B, Gou ML, Fu SZ, Zhang J, Men K, et al. Preparation of MPEG-PLA nanoparticle for honokiol delivery in vitro. Int J Pharm. 2010 Feb; 386(1-2): 262-7. https://doi.org/10.1016/j.ijpharm.2009.11.014
Kumar SS, Surianarayanan M, Vijayaraghavan R, Mandal AB, MacFarlane DR. Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid--in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Eur J Pharm Sci. 2014; 51(1): 34-44. https://doi.org/10.1016/j.ejps.2013.08.036
Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine. 2010; 6(1): 153-60. https://doi.org/10.1016/j.nano.2009.05.009
Gupta V, Aseh A, Ríos CN, Aggarwal BB, Mathur AB. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomedicine. 2009; 4: 115-22. https://doi.org/10.2147/IJN.S5581
Xu P, Yin Q, Shen J, Chen L, Yu H, Zhang Z, et al. Synergistic inhibition of breast cancer metastasis by silibininloaded lipid nanoparticles containing TPGS. Int J Pharm. 2013; 454(1): 21-30. https://doi.org/10.1016/j.ijpharm.2013.06.053
Sharma A, Gautam SP, Gupta AK. Surface modified dendrimers: synthesis and characterization for cancer targeted drug delivery. Bioorg Med Chem. 2011; 19(11): 3341-6. https://doi.org/10.1016/j.bmc.2011.04.046
Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR. Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro. Toxicol Lett. 2013; 223(2): 124-38. https://doi.org/10.1016/j.toxlet.2013.09.012
Zhang Y fei, Wang J cheng, Bian D yan, Zhang X, Zhang Q. Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: In vitro and in vivo studies. Eur J Pharm Biopharm. 2010; 74(3): 467-73. https://doi.org/10.1016/j.ejpb.2010.01.002
Siddiqui IA, Bharali DJ, Nihal M, Adhami VM, Khan N, Chamcheu JC, et al. Excellent anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine. 2014; 10(8): 1619-26. https://doi.org/10.1016/j.nano.2014.05.007
Sanna V, Pintus G, Roggio AM, Punzoni S, Posadino AM, Arca A, et al. Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells. J Med Chem. 2011; 54(5): 1321-32. https://doi.org/10.1021/jm1013715
Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI, et al. Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res. 2009; 69(5): 1712-6. https://doi.org/10.1158/0008-5472.CAN-08-3978
Wang Z, Wu J, Zhou Q, Wang Y, Chen T. Antihepatocarcinoma effects of berberine nanosuspension against human HepG2 and Huh7 cells as well as H22 tumor bearing mice. SPIE Proc. 2014; 9230: 6-13. https://doi.org/10.1117/12.2067978
Lu W, Chen S, Wen Z, Li Q, Chen J. In vitro evaluation of efficacy of dihydroartemisinin-loaded methoxy poly(ethylene glycol)/poly(l-lactic acid) amphiphilic block copolymeric micelles. J Appl Polym Sci. 2013; 128(5): 3084-92. https://doi.org/10.1002/app.38518
Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surfaces B Biointerfaces. 2013; 110: 313-20. https://doi.org/10.1016/j.colsurfb.2013.03.039
Wang T, Yin X, Lu Y, Shan W, Xiong S. Formulation, antileukemia mechanism, pharmacokinetics, and biodistribution of a novel liposomal emodin. Int J Nanomedicine. 2012; 7: 2325. https://doi.org/10.2147/IJN.S31029
Luque-Alcaraz AG, Lizardi J, Goycoolea FM, Valdez MA, Acosta AL, Iloki-Assanga SB, et al. Characterization and antiproliferative activity of nobiletin-loaded chitosan nanoparticles. J Nanomater. 2012; 2012: 265161. https://doi.org/10.1155/2012/265161
Shao J, Li X, Lu X, Jiang C, Hu Y, Li Q, et al. Enhanced growth inhibition effect of Resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids Surfaces B Biointerfaces. 2009 Aug 1; 72(1): 40-7. https://doi.org/10.1016/j.colsurfb.2009.03.010
Zhang H, Li X, Ding J, Xu H, Dai X, Hou Z, et al. Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2). Int J Pharm. 2013 Jan 30; 441(1-2): 261-8. https://doi.org/10.1016/j.ijpharm.2012.11.034
Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res. 2007; 24(7): 1369-80. https://doi.org/10.1007/s11095-007-9286-4
DeMuth PC, Su X, Samuel RE, Hammond PT, Irvine DJ. Nano-Layered Microneedles for Transcutaneous Delivery of Polymer Nanoparticles and Plasmid DNA. Adv Mater. 2010 Nov 16; 22(43): 4851-6. https://doi.org/10.1002/adma.201001525
Zhang Y, Brown K, Siebenaler K, Determan A, Dohmeier D, Hansen K. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res. 2011; 29(1): 170-7. https://doi.org/10.1007/s11095-011-0524-4
Prow TW, Chen X, Prow NA, Fernando GJP, Tan CSE, Raphael AP, et al. Nanopatch-targeted skin vaccination against West Nile virus and Chikungunya virus in mice. Small. 2010; 6(16): 1776-84. https://doi.org/10.1002/smll.201000331
Chen X, Prow TW, Crichton ML, Jenkins DWK, Roberts MS, Frazer IH, et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release. 2009; 139(3): 212-20. https://doi.org/10.1016/j.jconrel.2009.06.029
Chen X, Kask AS, Crichton ML, McNeilly C, Yukiko S, Dong L, et al. Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release. 2010; 148(3): 327-33. https://doi.org/10.1016/j.jconrel.2010.09.001
Pere CPP, Economidou SN, Lall G, Ziraud C, Boateng JS, Alexander BD, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018; 544(2): 425-32. https://doi.org/10.1016/j.ijpharm.2018.03.031
Moreira AF, Rodrigues CF, Jacinto TA, Miguel SP, Costa EC, Correia IJ. Microneedle-based delivery devices for cancer therapy: A review. Pharmacol Res. 2019; 148: 104438. https://doi.org/10.1016/j.phrs.2019.104438
Cole G, Ali AA, McCrudden CM, McBride JW, McCaffrey J, Robson T, et al. DNA vaccination for cervical cancer: Strategic optimisation of RALA mediated gene delivery from a biodegradable microneedle system. Eur J Pharm Boipharmaceutics. 2018; 127: 288-97. https://doi.org/10.1016/j.ejpb.2018.02.029
Duong HTT, Yin Y, Thambi T, Nguyen TL, Giang Phan VH, Lee MS, et al. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials. 2018; 185: 13-24. https://doi.org/10.1016/j.biomaterials.2018.09.008
Bhatnagar S, Kumari P, Pattarabhiran SP, Venuganti VVK. Zein microneedles for localized delivery of chemotherapeutic agents to treat breast cancer: drug loading, release behavior, and skin permeation studies. AAPS PharmSciTech. 2018; 19(4): 1818-26. https://doi.org/10.1208/s12249-018-1004-5
Hao Y, Dong M, Zhang T, Peng J, Jia Y, Cao Y, et al. Novel approach of using near-infrared responsive PEGylated gold nanorod coated poly(l-lactide) microneedles to enhance the antitumor efficiency of docetaxel-loaded MPEG-PDLLA micelles for treating an A431 tumor. ACS Appl Mater Interfaces. 2017; 9(18): 15317-27. https://doi.org/10.1021/acsami.7b03604
Mojeiko G, de Brito M, Salata GC, Lopes LB. Combination of microneedles and microemulsions to increase celecoxib topical delivery for potential application in chemoprevention of breast cancer. Int J Pharm. 2019; 560: 365-76. https://doi.org/10.1016/j.ijpharm.2019.02.011
Ma Y, Boese SE, Luo Z, Nitin N, Gill HS. Drug coated microneedles for minimally-invasive treatment of oral carcinomas: development and in vitro evaluation. Biomed Microdevices. 2015; 17(2): 44. https://doi.org/10.1007/s10544-015-9944-y
Chen MC, Lin ZW, Ling MH. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano. 2016; 10(1): 93-101. https://doi.org/10.1021/acsnano.5b05043
Bhatnagar S, Bankar NG, Kulkarni MV, Venuganti VVK. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int J Pharm. 2019; 556: 263-75. https://doi.org/10.1016/j.ijpharm.2018.12.022
Jonas O, Landry HM, Fuller JE, Santini JT, Baselga J, Tepper RI, et al. An implantable microdevice to perform highthroughput in vivo drug sensitivity testing in tumors. Sci Transl Med. 2015; 7(284): 284ps10. https://doi.org/10.1126/scitranslmed.3010564
Shah SAA, Firlak M, Berrow SR, Halcovitch NR, Baldock SJ, Yousafzai BM, et al. Electrochemically enhanced drug delivery using polypyrrole films. Materials (Basel). 2018; 11(7). https://doi.org/10.3390/ma11071123
Vaitkuviene A, Kaseta V, Voronovic J, Ramanauskaite G, Biziuleviciene G, Ramanaviciene A, et al. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J Hazard Mater. 2013; 250-251: 167-74. https://doi.org/10.1016/j.jhazmat.2013.01.038
Ramanaviciene A, Kausaite A, Tautkus S, Ramanavicius A. Biocompatibility of polypyrrole particles: an in-vivo study in mice. J Pharm Pharmacol. 2010; 59(2): 311-5. https://doi.org/10.1211/jpp.59.2.0017
Vaitkuviene A, Ratautaite V, Mikoliunaite L, Kaseta V, Ramanauskaite G, Biziuleviciene G, et al. Some biocompatibility aspects of conducting polymer polypyrrole evaluated with bone marrow-derived stem cells. Colloids Surfaces A Physicochem Eng Asp. 2014; 442: 152-6. https://doi.org/10.1016/j.colsurfa.2013.06.030
Negut I, Visan AI, Popescu C, Cristescu R, Ficai A, Grumezescu AM, et al. Successful release of voriconazole and flavonoids from MAPLE deposited bioactive surfaces. Appl Sci. 2019; 9(4): 786. https://doi.org/10.3390/app9040786
Garg S, Vermani K, Garg A, Anderson RA, Rencher WB, Zaneveld LJ. Development and characterization of bioadhesive vaginal films of sodium polystyrene sulfonate (PSS), a novel contraceptive antimicrobial agent. Pharm Res. 2005; 22(4): 584-95. https://doi.org/10.1007/s11095-005-2490-1
Garg S, Goldman D, Krumme M, Rohan LC, Smoot S, Friend DR. Advances in development, scale-up and manufacturing of microbicide gels, films, and tablets. Antiviral Res. 2010; 88(Suppl 1): S19-29. https://doi.org/10.1016/j.antiviral.2010.09.010
Misra A, Shahiwala A. Applications of polymers in drug delivery. Elsevier; 2021. ISBN 9780128226681 https://doi.org/10.1016/B978-0-12-819659-5.00013-6
Kumar L, Reddy MS, Shirodkar RK, Pai GK, Krishna VT, Verma R. Preparation and characterisation of fluconazole vaginal films for the treatment of vaginal candidiasis. Indian J Pharm Sci. 2013; 75(5): 585.
Mittal KL, Bakshi IS, Narang JK, editors. Bioadhesives in drug delivery. 1st ed. 2020. 432 p. ISBN 978-1-119-64019-6
Cristescu R, Negut I, Visan AI, Nguyen AK, Sachan A, Goering PL, et al. Matrix-assisted pulsed laser evaporationdeposited rapamycin thin films maintain antiproliferative activity. Int J Bioprinting. 2020; 6(1): 105-11. https://doi.org/10.18063/ijb.v6i1.188
Malcolm RK, Woolfson AD, Toner CF, Morrow RJ, McCullagh SD. Long-term, controlled release of the HIV microbicide TMC120 from silicone elastomer vaginal rings. J Antimicrob Chemother. 2005; 56(5): 954-6. https://doi.org/10.1093/jac/dki326
Machado RM, Palmeira-De-Oliveira A, Martinez-De-Oliveira J, Palmeira-De-Oliveira R. Vaginal films for drug delivery. J Pharm Sci. 2013; 102(7): 2069-81. https://doi.org/10.1002/jps.23577
Dobaria NB, Badhan AC, Mashru RC. A novel itraconazole bioadhesive film for vaginal delivery: design, optimization, and physicodynamic characterization. AAPS PharmSciTech. 2009; 10(3): 951-9. https://doi.org/10.1208/s12249-009-9288-0
Zhang W, Hu M, Shi Y, Gong T, Dezzutti CS, Moncla B, et al. Vaginal microbicide film combinations of two reverse transcriptase inhibitors, EFdA and CSIC, for the prevention of HIV-1 sexual transmission. Pharm Res. 2015; 32(9): 2960. https://doi.org/10.1007/s11095-015-1678-2
Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res. 2009; 26(3): 502-11. https://doi.org/10.1007/s11095-008-9765-2
Thambi T, Deepagan VG, Yoon HY, Han HS, Kim SH, Son S, et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials. 2014; 35(5): 1735-43. https://doi.org/10.1016/j.biomaterials.2013.11.022
Thambi T, Park JH, Lee DS. Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chem Commun. 2016; 52(55): 8492-500. https://doi.org/10.1039/C6CC02972H
Thambi T, Son S, Lee DS, Park JH. Poly(ethylene glycol)-bpoly( lysine) copolymer bearing nitroaromatics for hypoxiasensitive drug delivery. Acta Biomater. 2016; 29: 261-70. https://doi.org/10.1016/j.actbio.2015.10.011
Topchieva IN, Efremova NV, Khvorov NV, Magretova NN. Synthesis and physicochemical properties of protein conjugates with water-soluble poly(alkylene oxides). Bioconjug Chem. 1995; 6(4): 380-8. https://doi.org/10.1021/bc00034a007
Amiji M, Park K. Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials. 1992; 13(10): 682-92. https://doi.org/10.1016/0142-9612(92)90128-B
Visan AI, Ristoscu C, Popescu-Pelin G, Sopronyi M, Matei CE, Socol G, et al. Composite drug delivery system based on amorphous calcium phosphate-chitosan: An efficient antimicrobial platform for extended release of tetracycline. Pharmaceutics. 2021; 13(10): 1659. https://doi.org/10.3390/pharmaceutics13101659
Gherasim O, Popescu-Pelin G, Florian P, Icriverzi M, Roseanu A, Mitran V, et al. Bioactive ibuprofen-loaded PLGA coatings for multifunctional surface modification of medical devices. Polymers (Basel). 2021; 13(9): 1413. https://doi.org/10.3390/polym13091413
Grumezescu V, Negut I, Cristescu R, Grumezescu AM, Holban AM, Iordache F, et al. Isoflavonoid-antibiotic thin films fabricated by MAPLE with improved resistance to microbial colonization. Molecules. 2021; 26(12): 3634. https://doi.org/10.3390/molecules26123634