Applications of Magnetic Nanoparticles in Cancer Detection and Treatment

Authors

  • Ram Prakash Chauhan Department of Chemistry, Govt. Post Graduate College-Bilaspur, Himachal Pradesh-174001, India
  • Aneesh Dharmani M. L. S. M. College, Sunder Nagar, Distt. Mandi, Himachal Pradesh-175018, India

DOI:

https://doi.org/10.12974/2311-8792.2017.05.4

Keywords:

Embolotherapy, hyperthermia, magnetic separation, targeted delivery, thermoablation.

Abstract

Cancer detection and treatment has been a challenge for medical science till the years. The ability of cancer cells to multiply quickly and invade other parts of the body by process of metastasis further complicates the situation. Hence prognosis of cancer and its proper treatment also becomes difficult, as invading cells are not easy to detect at initial stages of spreading of infection. This limitation of not being able to detect invading tumor cells can be overcome by applying nanotechnology based approaches. Nanomaterials being very small in size have remarkable properties which are absent in their bulk counterparts. These properties possessed by materials at the nanoscale make them very useful for cancer theranostics. Further nanomaterials are having large number of surface atoms, as well as high surface activity because of high surface area to volume ratio; therefore their surface functionalisation can be done so as to make them useful for diagnosis and treatment of cancer. This could prove to be very promising in the early detection and treatment of cancer. 

References

World Health Organization. The Global Burden of Disease: 2004 Update. Geneva: World Health Organization; 2008.

The World Health Report 2004 Deaths by cause, sex and mortality stratum in WHO regions, estimates for 2002.

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: A Cancer Journal for Clinicians 2011; 61: 69-90. https://doi.org/10.3322/caac.20107

Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. Journal of American Chemical Society 2002; 124: 8204-05. https://doi.org/10.1021/ja026501x

Pei W, Kumada H, Natusme T, Saito H, Ishio S. Study on magnetite nanoparticles synthesised by chemical method. Journal of Magnetism and Magnetic Materials 2007; 310: 2375-77. https://doi.org/10.1016/j.jmmm.2006.10.837

Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002; 23: 1553-61. https://doi.org/10.1016/S0142-9612(01)00267-8

Thorek D L J, Chen A K, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annals of Biomedical Engineering 2006; 34: 23-38. https://doi.org/10.1007/s10439-005-9002-7

Cerda L A G, Castro M U E, Zertuche M S. Preparation and characterisation of polyvinyl alcohol-cobalt ferrite nanocomposites. Journal of Non Crystalline Solids 2007; 353: 808-810. https://doi.org/10.1016/j.jnoncrysol.2006.12.046

Mornet S, Portier J, Duguet E. A method for synthesis and functionalisation of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. Journal of Magnetism and Magnetic Materials 2005; 293: 127-34. https://doi.org/10.1016/j.jmmm.2005.01.053

Sun Y, Duan L, Guo Z, Mu Y D, Ma M, Xu L, et al. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. Journal of Magnetism and Magnetic Materials 2005; 285: 65-70. https://doi.org/10.1016/j.jmmm.2004.07.016

Xu C, Zheng R, Liu H, Zhang X, Guo Z, Xu B. Dopamine as a robust anchor to immobilise functional molecules on the iron oxide shell of magnetic nanoparticles. Journal of American Chemical Society 2004; 126: 9938-39. https://doi.org/10.1021/ja0464802

Sousa M H, Rubim J C, Sobrinho P G, Tourinho F A. Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. Journal of Magnetism and Magnetic Materials 2001; 225: 67-72. https://doi.org/10.1016/S0304-8853(00)01229-4

Iida H, Nakanishi T, Osaka T. Surface modification of γ- Fe2O3 nanoparticles with aminopropylsilyl groups and interparticle linkage with α, ω-dicarboxylic acids. Electrochimica Acta 2005; 51: 855-859. https://doi.org/10.1016/j.electacta.2005.04.056

Suriamoorthy P, Zhang X, Hao G, Joly A G, Singh S, Hossu M, et al. Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting. Cancer Nanotechnology 2010; 1: 19-28. https://doi.org/10.1007/s12645-010-0003-3

Chauhan R P, Mathur R, Singh G, Kaul A, Bag N, Singh S, et al. Evaluation of folate conjugated superparamagnetic iron oxide nanoparticles for scintigraphic/magnetic resonance imaging. Journal of Biomedical Nanotechnology 2013; 9: 323-34. https://doi.org/10.1166/jbn.2013.1548

Xie J, Chen K, Lee H Y, Xu C, Hsu A R, Peng S, et al. Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. Journal of Americal Chemical Society 2008; 130: 7542-43. https://doi.org/10.1021/ja802003h

Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, et al. In vivo MRI detection of gliomas by chlorotoxin conjugated superparamagnetic nanoprobes. Small 2008; 4: 372-79. https://doi.org/10.1002/smll.200700784

Occhipinti E, Verderio P, Natalello A, Galbiati E, Colombo M, Mazzucchelli S, et al. Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale 2011; 3: 387-90. https://doi.org/10.1039/C0NR00436G

Chauhan R P, Singh G, Singh S, Bag N, Patra M, Vadera S R, et al. Biotinylated magnetic nanoparticles for pretargeting: Synthesis and characterization study. Cancer Nanotechnology 2011; 2: 111-20. https://doi.org/10.1007/s12645-011-0021-9

Chauhan R P, Mathur R, Singh G, Bag N, Singh S, Chuttani K, et al. Evaluation of biotinylated magnetic nanoparticles for tumor imaging. Journal of Materials Science 2013; 48: 3913-25. https://doi.org/10.1007/s10853-013-7193-0

Kobayashi H, Sakahara H, Endo K, Hosono M, Yao Z S, Toyama S, et al. Comparison of chase effects of avidin, streptavidin, neutravidin and avidin-ferritin on a radiolabeled biotinylated anti tumor monoclonal antibody. Japanese Journal of Cancer Research 1995; 86: 310-14. https://doi.org/10.1111/j.1349-7006.1995.tb03056.x

Leamon C P, Low P S. Membrane folate binding proteins are responsible for the folate protein conjugate endocytosis into cultured cells. Biochemical Journal 1993; 291: 855-60. https://doi.org/10.1042/bj2910855

Weitman S D, Lark R H, Coney L R, Fort D W, Frasca V, Zurawski V R, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Research 1992; 52: 3396-3401.

Sudimack J, Lee R J. Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews 2000; 41: 147-62. https://doi.org/10.1016/S0169-409X(99)00062-9

Falcioni R, Cimino L, Gentileschi MP, D'Agnano I, Zupi G, Kennel SJ, et al. Expression of beta 1, beta 3, beta 4 and beta 5 integrins by human lung carcinoma cells of different histotypes. Exp Cell Res 1994; 210: 113-22. https://doi.org/10.1006/excr.1994.1017

Brooks P, Stromblad S, Klemke R, Visscher D, Sarkar F, Cheresh D. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995; 96: 1815-22. https://doi.org/10.1172/JCI118227

Gladson C, Cheresh D. Glioblastoma expression of vitronectin and the αvβ3 integrin. J Clin Invest 1991; 88: 1924-32. https://doi.org/10.1172/JCI115516

Veiseh M, Zhang M, Hansen SJ, Greenberg N M, Ellenbogen R G, Olson J M et al. Tumor paint: A chlorotoxin: Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 2007; 67: 6882-88. https://doi.org/10.1158/0008-5472.CAN-06-3948

Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5: 161-71. https://doi.org/10.1038/nrc1566

Berensmeier S. Magnetic particles for the separation and purification of nucleic acids. Applied Microbiology and Biotechnology 2006; 73: 495-504. https://doi.org/10.1007/s00253-006-0675-0

Hardingham J E, Kotasek D, Sage R E, Eaton M C, Pascoe V H, Dobrovic A. Detection of circulating tumor cells in colorectal cancer by immunobead-PCR is a sensitive prognostic marker for relapse of disease. Molecular Medicine 1995; 1: 789-94.

Panchapakesan B, Caprara R, Velasco V, Loomis J, King B, Burkhead T, et al. Micro and nanotechnology approaches for capturing circulating tumor cells. Cancer Nanotechnology 2010; 1: 3-11. https://doi.org/10.1007/s12645-010-0007-z

Sieben S, Bergemann C, Lubbe A, Brockmann B, Rescheleit D. Comparison of different particles and methods for magnetic isolation of circulating tumor cells. Journal of Magnetism and Magnetic Materials 2001; 225: 175-79. https://doi.org/10.1016/S0304-8853(00)01248-8

Galanzha E I, Shashkov E V, Kelly T, Kim J W, Yang L, Zharov V P. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumor cells. Nature Nanotechnology 2009; 4: 855-60. https://doi.org/10.1038/nnano.2009.333

Zieglschmid V, Hollmann C, Gutierrez B, Albert W, Strothoff D, Gross E, et al. Combination of immunomagnetic enrichment with multiplex RT-PCR analysis for the detection of disseminated tumor cells. Anticancer Research 2005; 25: 1803-10.

Yoo C E, Park J M, Moon H S, Joung J G, Son D S, Jeon H J, et al. Vertical magnetic separation of circulating tumor cells for somatic genomic-alteration analysis in lung cancer patients. Scientific Reports 2016; 6: 37392. https://doi.org/10.1038/srep37392

Cristofanilli M, Budd G T, Ellis M J, Stopeck A, Matera J, Miller M C, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New England Journal of Medicine 2004; 351: 781-91. https://doi.org/10.1056/NEJMoa040766

Hergt R, Dutz S, Muller R, Zeisberger M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Condensed Matter 2006; 18: S2919-34. https://doi.org/10.1088/0953-8984/18/38/S26

Cardinal J, Klune J R, Chory E, Jeyabalan G, Kanzius J S, Nalesnik M, et al. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery 2008; 144: 125-32. https://doi.org/10.1016/j.surg.2008.03.036

Cherukuri P, Glazer E S, Curley S A. Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews 2010; 62: 339-45. https://doi.org/10.1016/j.addr.2009.11.006

Baronzio G, Parmar G, Ballerini M, Szasz A, Baronzio M, Cassutti V. A brief overview of hyperthermia in cancer treatment. Journal of Integr Oncol 2014, 3: 1, 115.

Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. International Journal of Hyperthermia 2005; 21: 637-647. https://doi.org/10.1080/02656730500158360

Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer, International Journal of Hyperthermia 2010; 26: 790-95. https://doi.org/10.3109/02656731003745740

Assogna M, Castigliani G, Coletta D, De Chicchis M, Gargano L, Mauro F, et al. Chemotherapy combined with regional hyperthermia in locally advanced unresectable pancreatic cancer: clinical and anthropological benefits. Oncothermia Journal 2013; 7: 116-18.

Mandraveli E, Theodosopoulou E, Pistofιdis A, Alexandratou K, Alexandratos A, Xatzopoulou A, et al. The action of hyperthermia in metastatic colorectal cancer in combination with chemotherapy. Prog Health Sci 2015; 5, 69-79.

Jha S, Sharma P K, Malviya R. Hyperthermia: Role and risk factor for cancer treatment. Achievements in the Life Sciences 2016, 10: 161-67. https://doi.org/10.1016/j.als.2016.11.004

Vogl T J, Eckert R, Naguib N N, Beeres M, Gruber-Rouh T, Nour-Eldin A. Thermal ablation of colorectal lung metastases: Retrospective comparison among laser-induced thermotherapy, radiofrequency ablation, and microwave ablation. AJR 2016; 207: 1340-49. https://doi.org/10.2214/AJR.15.14401

Bastian P, Bartkowski R, Kohler H, Kissel T. Chemoembolization of experimental liver metastases. Part I: Distribution of biodegradable microspheres of different sizes in an animal model for the locoregional therapy. Eur J Pharm Biopharm 1998; 46: 243-54. https://doi.org/10.1016/S0939-6411(98)00047-2

Siskin G P, Dowling K, Virmani R, Jones R, Todd D. Pathologic evaluation of a spherical Polyvinyl Alcohol embolic agent in a porcine renal model. J Vasc Interv Radiol 2003; 14: 89-98. https://doi.org/10.1097/01.RVI.0000052296.26939.4c

Wang Y X J, Transcatheter embolization therapy in liver cancer. Recent Patents on Medical Imaging 2012; 2: 150-62. https://doi.org/10.2174/1877613211202020150

Lee H S, Kim E H, Shao H, Kwak B K. Synthesis of SPIOchitosan microspheres for MRI-detectable embolotherapy. Journal of Magnetism and Magnetic Materials 2005; 293: 102-05. https://doi.org/10.1016/j.jmmm.2005.01.049

Chung E Y, Kim H M, Lee G H, Kwak B K, Jung J S, Kuh H J, et al. Design of deformable chitosan microspheres loaded with superparamagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging. Carbohydrate Polymer 2012; 90: 1725-31. https://doi.org/10.1016/j.carbpol.2012.07.058

Jain RK. Transport of molecules across tumor vasculature. Cancer Metastasis Rev 1987; 6: 559-93. https://doi.org/10.1007/BF00047468

Wang X, Yang L, Chen Z, Shin D M. Application of nanotechnology in cancer therapy and imaging. CA A Cancer Journal for Clinicians 2008; 58: 97-110. https://doi.org/10.3322/CA.2007.0003

Salmanogli A. Nanobio application of quantum dots in cancer: Imaging, sensing and targeting. Cancer Nanotechnology 2011; 2: 1-19. https://doi.org/10.1007/s12645-011-0015-7

Weissleder R, Stark D D, Engelstad B L, Bacon B R, Compton C C, White D L, et al. Superparamagnetic iron oxide: Pharmacokinetics and toxicity. American Journal of Roentgenology 1989; 152: 167-73. https://doi.org/10.2214/ajr.152.1.167

Kievit F M, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Accounts of Chemical Research 2011; 44: 853-62. https://doi.org/10.1021/ar2000277

McCarthy J R, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced Drug Delivery Reviews 2008; 60: 1241-51. https://doi.org/10.1016/j.addr.2008.03.014

Downloads

Published

2017-02-27

How to Cite

Chauhan, R. P., & Dharmani, A. (2017). Applications of Magnetic Nanoparticles in Cancer Detection and Treatment. Journal of Nanotechnology in Diagnosis and Treatment, 5, 34–43. https://doi.org/10.12974/2311-8792.2017.05.4

Issue

Section

Articles