Optical Manipulation of Micro / Nanoparticles Using Fiber-Based Optical Tweezers

Authors

  • D. G. Kotsifaki Optoelectronics, Lasers and Applications Laboratory, Physics Department, School of Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
  • S. Aggelopoulos Optoelectronics, Lasers and Applications Laboratory, Physics Department, School of Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
  • M. Makropoulou Optoelectronics, Lasers and Applications Laboratory, Physics Department, School of Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
  • A. A. Serafetinides Optoelectronics, Lasers and Applications Laboratory, Physics Department, School of Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece

DOI:

https://doi.org/10.12974/2311-8792.2016.04.4

Keywords:

Microparticles, nanoparticles, fiber-based optical tweezers, optical trapping efficiency, diagnostic tool, microfluidic chamber.

Abstract

Over forty years, the optical tweezers have been used to facilitate new scientific findings and benchmark single-molecule studies. One of the next steps, as far as applications is concerned, is expected to be their use as medical diagnostic tools, where in parallel, manipulation, sorting, and diagnosis of large number of biological particles, using the optical trapping technique will make the current clinical procedures quicker and cheaper. However, most of the current optical tweezers are based on objective lenses, which are bulky, expensive, and hard to integrate. Optical tweezers based on optical fibers have great potential to solve the abovementioned limitations. This paper attempts to provide solutions in order to overcome the limitations of current conventional optical tweezers with the objective of achieving fundamental understanding and improving the performance of fiber-based optical tweezers. Thus, we develop an optical fiber tweezers using a continuous wave diode GaAlAs laser operating at 659-nm for trapping dielectric nanoparticles (900-nm diameter and 3-?m diameter), suspended in deionized water. We systematically measure the optical trapping force and the effective trapping quality factor. We also investigate the dependence of the trapping force on both the insertion angle of the fiber into the sample chamber and the size of the trapped particle. 

References

Ashkin A, Dziedzic JM, Bjorkholm JE and Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 1986; 11: 288-90. https:/doi.org/10.1364/OL.11.000288

Grier DG. A revolution in optical manipulation. Nature 2003; 424: 810-16. https:/doi.org/10.1038/nature01935

Dholakia K and Reece P. Optical micromanipulation takes hold. Nano Today 2006; 1: 18-27. https:/doi.org/10.1016/S1748-0132(06)70019-6

Shvedov VG, Rode AV, Izdebskaya YV, Desyathikov AS, Krolikowski W and Kivshar YS. Giant optical manipulation. Phys Rev Lett 2010; 105: 118103. https:/doi.org/10.1103/PhysRevLett.105.118103

Moffitt JR, Chemla YR, Smith SB and Bustamante C. Recent advances in optical tweezers. Annu Rev Biochem 2008; 77: 205-28. https:/doi.org/10.1146/annurev.biochem.77.043007.090225

Dienerowitz M, Cowan LV, Gibson GN, Hay R, Padgett MJ and Phoenix VR. Optically Trapped Bacteria Pairs Reveal Discrete Motile Response to Control Aggregation upon Cell– Cell Approach. Curr Microbiol 2014; 69(5): 669-74. https:/doi.org/10.1007/s00284-014-0641-5

Eriksson E, Sott K, Lundqvist F, Sveningsson M, Scrimgeour J, Hanstorp D, et al. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip 2010; 10: 617-25. https:/doi.org/10.1039/B913587A

Juan ML, Righini M and Quidant R. Plasmon nano-optical tweezers. Nature Photon 2011; 5: 349-56. https:/doi.org/10.1038/nphoton.2011.56

Grigorenko AN, Roberts NW, Dickinson MR and Zhang Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon 2008; 2: 365-70. https:/doi.org/10.1038/nphoton.2008.78

Zhang X, Ma M and Zhang Y. High-resolution optical tweezers for single molecule manipulation. Yale J Biol Med 2013; 86(3): 367-83.

Bustamante C, Bryant Z and Smith SB. Ten years of tension: single-molecule DNA mechanics. Nature 2003; 421: 423-27. https:/doi.org/10.1038/nature01405

Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci 1997; 94: 4853-60. https:/doi.org/10.1073/pnas.94.10.4853

Lee MP, Curran A, Gibson GM, Tassieri M, Hecken berg NR and Padgett MJ. Optical shield: measuring viscosity of turbid fluids using optical tweezers. Opt Express 2012; 20(11): 12127-32. https:/doi.org/10.1364/OE.20.012127

Hu Z, Wang J and Liang J. Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe. Opt Express 2004; 12: 4123-28. https:/doi.org/10.1364/OPEX.12.004123

Liu Z, Guo C, Yang J and Yuan L. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Opt Express 2006; 14: 12510-16. https:/doi.org/10.1364/OE.14.012510

Yuan L, Liu Z and Yang J. Measurement approach of Brownian motion force by an abrupt tapered fiber optic tweezers. Appl Phys Lett 2007; 91: 054101. https:/doi.org/10.1063/1.2760179

Xin H, Li X and Li B. Massive photo thermal trapping and migration of particles by a tapered optical fiber. Opt Express 2011; 19: 17065-74. https:/doi.org/10.1364/OE.19.017065

Constable A, Kim K, Mervis J, Zarinetchi F and Prentiss M. Demonstration of a fiber optical light force trap. Opt Lett 1993; 18: 1867-69. https:/doi.org/10.1364/OL.18.001867

Lyons ER and Sonek GJ. Confinement and bistability in a tapered hemispherically lensed optical fiber trap. Appl Phys Lett 1995; 66(13): 1584. https:/doi.org/10.1063/1.113859

Taguchi Κ, Atsuta Κ, Nakata Τ and Ikeda Μ. Experimental analysis of optical trapping system using tapered hemispherically lensed optical fiber. Opt Rev 1999; 6: 224-26. https:/doi.org/10.1007/s10043-999-0224-z

Taguchi K, Atsuta K, Nakata T and Ikeda M. Single laser beam fiber optic trap. Optical and Quantum Electronics 2001; 33: 99-06. https:/doi.org/10.1023/A:1007020506265

Hu Z, Wang J and Liang J. Theoretical and experimental investigation of the optical trapping force in single lensed fibre trapping. Journal of Optics A: Pure and Applied Optics 2006; 8: 891-96. https:/doi.org/10.1088/1464-4258/8/10/010

Abedin KS, Kerbage C, Fernandez-Nieves A and Weitz DA. Optical manipulation and rotation of liquid crystal drops using high-index fiber-optics tweezers. Appl Phys Lett 2007; 91: 091119. https:/doi.org/10.1063/1.2775321

Rodrigues Ribeiro RS, Soppera O, Oliva AG, Guerreiro A and Jorge PAS. New trends on optical fiber tweezers. IEEE J Lightwave technol 2015; 33(16): 3394-405. https:/doi.org/10.1109/JLT.2015.2448119

Sundar S and Prajapati VK. Drug targeting to infectious diseases by nanoparticles surface functionalized with special biomolecules. Curr Med Chem 2012; 19(19): 3196-202. https:/doi.org/10.2174/092986712800784630

Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 2015; 44: 4743-768. https:/doi.org/10.1039/C4CS00392F

Difato F, Pinato G and Cojoc D. Cell Signaling Experiments Driven by Optical Manipulation. Int J Mol Sci 2013; 14: 8963-984. https:/doi.org/10.3390/ijms14058963

Papagiakoumou E, Pietreanu D, Makropoulou M, Kovacs E and Serafetinides AA. Evaluation of trapping efficiency of optical tweezers by dielectrophoresis. J Biomed Opt 2006; 11(1): 0143. https:/doi.org/10.1117/1.2165176

Kotsifaki DG, Makropoulou M and Serafetinides AA. Efficient and low cost multiple optical trap based on interference. Optik 2013; 124: 617. https:/doi.org/10.1016/j.ijleo.2011.12.037

Gannot I, Ben-David M, Croitoru N and Waynant RW. Beam shape analysis of waveguide delivered infrared lasers. Opt Engin 2002; 41(1): 244-50. https:/doi.org/10.1117/1.1420191

Hale GM and Querry MR. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Appl Opt 1973; 12: 555-63. https:/doi.org/10.1364/AO.12.000555

Downloads

Published

2016-06-15

How to Cite

Kotsifaki, D. G., Aggelopoulos, S., Makropoulou, M., & Serafetinides, A. A. (2016). Optical Manipulation of Micro / Nanoparticles Using Fiber-Based Optical Tweezers. Journal of Nanotechnology in Diagnosis and Treatment, 4, 25–30. https://doi.org/10.12974/2311-8792.2016.04.4

Issue

Section

Articles