A Comparative Study of Water Dispersible Orange-Emitting Mn-Doped ZnSe/ZnS and CdTe/CdS Core/Shell Quantum Dots

Authors

  • Abdelhay Aboulaich Materials Science and Nano-engineering Department, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Bengurir, Morocco
  • Christophe Merlin Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
  • Raphael Schneider Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France

DOI:

https://doi.org/10.12974/2311-8792.2021.07.1

Keywords:

Quantum Dots (QDs), Cytotoxicity, Cd-Free QDs, 3-Mercaptopropionic Acid, Core/Shell Structure, Photoluminescence.

Abstract

3-Mercaptopropionic acid (MPA)-capped Mn-doped ZnSe/ZnS and CdTe/CdS core/shell quantum dots (QDs) were prepared via a mild aqueous phase process. The synthesis conditions were adjusted to yield QDs with roughly similar nanocrystal average diameter and light emission wavelengths. X-ray powder diffraction, transmission electron microscopy and spectrofluorometry have been used to characterize the crystal structure and optical properties of the as-prepared QDs. Growth inhibition tests using E. coli bacterial cells were also carried out to assess the cytotoxicity of the dots and showed that core/shell ZnSe:Mn/ZnS@MPA QDs do not exhibit any cytotoxicity against E. coli cells up to a concentration of 14 µM while at this concentration CdTe/CdS@MPA core/shell QDs exert a severely more pronounced cytotoxicity. These results indicate that the cytotoxicity is likely associated to the presence of Cd in the chemical composition of CdTe/CdS@MPA QDs and that ZnSe:Mn/ZnS@MPA nanocrystals are safer and could be used as biological probes for cells and tissues imaging. 

References

Alivisatos AP. Semiconductor nanocrystals. MRS bulletin. 1995;20(8):23-32. https://doi.org/10.1557/s0883769400045073

Murray CB, Kagan aC, Bawendi M. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual review of materials science. 2000;30(1):545-610.

Rogach AL. Semiconductor nanocrystal quantum dots. Verlag, Wien. 2008. https://doi.org/10.1007/978-3-211-75237-1

Coe-Sullivan S, Liu W, Allen P, Steckel JS. Quantum dots for LED downconversion in display applications. ECS Journal of Solid State Science and Technology. 2012;2(2):R3026. https://doi.org/10.1149/2.012302jss

Liu Z, Lin C-H, Hyun B-R, Sher C-W, Lv Z, Luo B, et al. Micro-light-emitting diodes with quantum dots in display technology. Light: Science & Applications. 2020;9(1):1-23. https://doi.org/10.1038/s41377-020-0268-1

Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature. 2014;515(7525):96-9. https://doi.org/10.1038/nature13829

Park N-M, Kim T-S, Park S-J. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Applied Physics Letters. 2001;78(17):2575-7. https://doi.org/10.1063/1.1367277

Sun Q, Wang YA, Li LS, Wang D, Zhu T, Xu J, et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nature photonics. 2007;1(12):717-22. https://doi.org/10.1038/nphoton.2007.226

Mora‐Seró I. Current Challenges in the Development of Quantum Dot Sensitized Solar Cells. Advanced Energy Materials. 2020;10(33):2001774. https://doi.org/10.1002/aenm.202001774

Sahu A, Garg A, Dixit A. A review on quantum dot sensitized solar cells: past, present and future towards carrier multiplication with a possibility for higher efficiency. Solar Energy. 2020;203:210-39. https://doi.org/10.1016/j.solener.2020.04.044

Song JH, Jeong S. Colloidal quantum dot based solar cells: from materials to devices. Nano Convergence. 2017;4(1):1-8. https://doi.org/10.1186/s40580-017-0115-0

Costa-Fernández JM, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing. TrAC Trends in Analytical Chemistry. 2006;25(3):207-18. https://doi.org/10.1016/j.trac.2005.07.008

Ma Q, Su X. Recent advances and applications in QDs-based sensors. Analyst. 2011;136(23):4883-93. https://doi.org/10.1039/c1an15741h

Shang ZB, Wang Y, Jin WJ. Triethanolaminecapped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta. 2009;78(2):364-9. https://doi.org/10.1016/j.talanta.2008.11.025

Zhou X, Ma P, Wang A, Yu C, Qian T, Wu S, et al. Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosensors and Bioelectronics. 2015;64:404-10. https://doi.org/10.1016/j.bios.2014.09.038

Aboulaich A, Balan L, Ghanbaja J, Medjahdi G, Merlin C, Schneider R. Aqueous route to biocompatible ZnSe: Mn/ZnO core/shell quantum dots using 1-thioglycerol as stabilizer. Chemistry of Materials. 2011;23(16):3706-13. https://doi.org/10.1021/cm2012928

Klostranec JM, Chan WC. Quantum dots in biological and biomedical research: recent progress and present challenges. Advanced Materials. 2006;18(15):1953-64. https://doi.org/10.1002/adma.200500786

Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. science. 2005;307(5709):538-44. https://doi.org/10.1126/science.1104274

Morosini V, Bastogne T, Frochot C, Schneider R, François A, Guillemin F, et al. Quantum dot– folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer. Photochemical & Photobiological Sciences. 2011;10(5):842-51. https://doi.org/10.1039/c0pp00380h

Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chemistry & biology. 2011;18(1):10-24. https://doi.org/10.1016/j.chembiol.2010.11.013

Sutherland AJ. Quantum dots as luminescent probes in biological systems. Current Opinion in Solid State and Materials Science. 2002;6(4):365-70. https://doi.org/10.1016/s1359-0286(02)00081- 5

Zheng Y, Gao S, Ying JY. Synthesis and cellimaging applications of glutathione‐capped CdTe quantum dots. Advanced Materials. 2007;19(3):376-80. https://doi.org/10.1002/adma.200600342

Xu G, Yong K-T, Roy I, Mahajan SD, Ding H, Schwartz SA, et al. Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood− brain barrier. Bioconjugate chemistry. 2008;19(6):1179-85. https://doi.org/10.1021/bc700477u

Hild W, Breunig M, Göpferich A. Quantum dots–nano-sized probes for the exploration of cellular and intracellular targeting. European Journal of Pharmaceutics and Biopharmaceutics. 2008;68(2):153-68. https://doi.org/10.1016/j.ejpb.2007.06.009

Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao W, et al. Aqueous‐phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. small. 2009;5(11):1302-10. https://doi.org/10.1002/smll.200801555

Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, et al. (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B. 1997;101(46):9463-75. https://doi.org/10.1021/jp971091y

Talapin DV, Mekis I, Götzinger S, Kornowski A, Benson O, Weller H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core− Shell− Shell Nanocrystals. The Journal of Physical Chemistry B. 2004;108(49):18826-31. https://doi.org/10.1021/jp046481g

Rawana P. Restriction of Hazardous Substances in Electrical and Electronic Equipment (RoHS) policy info in the UK. 2010.

Murray C, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society. 1993;115(19):8706-15. https://doi.org/10.1021/ja00072a025

Peng ZA, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society. 2001;123(1):183-4. https://doi.org/10.1021/ja003633m

Qu L, Peng X. Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society. 2002;124(9):2049-55. https://doi.org/10.1021/ja017002j

Xue B, Cao J, Deng D, Xia J, Jin J, Qian Z, et al. Four strategies for water transfer of oilsoluble near-infrared-emitting PbS quantum dots. Journal of Materials Science: Materials in Medicine. 2012;23(3):723-32. https://doi.org/10.1007/s10856-012-4548-z

Kauffer F-A, Merlin C, Balan L, Schneider R. Incidence of the core composition on the stability, the ROS production and the toxicity of CdSe quantum dots. Journal of hazardous materials. 2014;268:246-55. https://doi.org/10.1016/j.jhazmat.2014.01.029

Aboulaich A, Billaud D, Abyan M, Balan L, Gaumet J-J, Medjadhi G, et al. One-pot noninjection route to CdS quantum dots via hydrothermal synthesis. ACS applied materials & interfaces. 2012;4(5):2561-9. https://doi.org/10.1021/am300232z

Aboulaich A, Geszke M, Balan L, Ghanbaja J, Medjahdi G, Schneider R. Water-based route to colloidal Mn-doped ZnSe and core/shell ZnSe/ZnS quantum dots. Inorganic chemistry. 2010;49(23):10940-8. https://doi.org/10.1021/ic101302q

Geszke-Moritz M, Piotrowska H, Murias M, Balan L, Moritz M, Lulek J, et al. Thioglycerolcapped Mn-doped ZnS quantum dot bioconjugates as efficient two-photon fluorescent nano-probes for bioimaging. Journal of Materials Chemistry B. 2013;1(5):698-706. https://doi.org/10.1039/c2tb00247g

Kolmykov O, Coulon J, Lalevée J, Alem H, Medjahdi G, Schneider R. Aqueous synthesis of highly luminescent glutathione-capped Mn2+-doped ZnS quantum dots. Materials Science and Engineering: C. 2014;44:17-23. https://doi.org/10.1016/j.msec.2014.07.064

Labiadh H, Chaabane TB, Piatkowski D, Mackowski S, Lalevée J, Ghanbaja J, et al. Aqueous route to color-tunable Mn-doped ZnS quantum dots. Materials Chemistry and Physics. 2013;140(2-3):674-82. https://doi.org/10.1016/j.matchemphys.2013.04 .023

Mabrouk S, Rinnert H, Balan L, Blanchard S, Jasniewski J, Medjahdi G, et al. Aqueous synthesis of highly luminescent ternary alloyed Mn-doped ZnSeS quantum dots capped with 2-mercaptopropionic acid. Journal of Alloys and Compounds. 2021;858:158315. https://doi.org/10.1016/j.jallcom.2020.158315

Mrad M, Ben Chaabane T, Rinnert H, Lavinia B, Jasniewski J, Medjahdi G, et al. Aqueous synthesis for highly emissive 3- mercaptopropionic acid-capped AIZS quantum dots. Inorganic chemistry. 2020;59(9):6220-31. https://doi.org/10.1021/acs.inorgchem.0c00347

Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental health perspectives. 2006;114(2):165-72. https://doi.org/10.1289/ehp.8284

Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters. 2004;4(11):2163-9. https://doi.org/10.1021/nl048715d

Chen T, Li L, Xu G, Wang X, Wang J, Chen Y, et al. Cytotoxicity of InP/ZnS quantum dots with different surface functional groups toward two lung-derived cell lines. Frontiers in pharmacology. 2018;9:763. https://doi.org/10.3389/fphar.2018.00763

Schneider R, Wolpert C, Guilloteau H, Balan L, Lambert J, Merlin C. The exposure of bacteria to CdTe-core quantum dots: the importance of surface chemistry on cytotoxicity. Nanotechnology. 2009;20(22):225101. https://doi.org/10.1088/0957- 4484/20/22/225101

Shiohara A, Hoshino A, Hanaki Ki, Suzuki K, Yamamoto K. On the cyto‐toxicity caused by quantum dots. Microbiology and immunology. 2004;48(9):669-75. https://doi.org/10.1111/j.1348- 0421.2004.tb03478.x

Lovrić J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine. 2005;83(5):377-85. https://doi.org/10.1007/s00109-004-0629-x

Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano letters. 2004;4(1):11-8. https://doi.org/10.1021/nl0347334

Priester JH, Stoimenov PK, Mielke RE, Webb SM, Ehrhardt C, Zhang JP, et al. Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environmental science & technology. 2009;43(7):2589-94. https://doi.org/10.1021/es802806n

Liu W, Zhang S, Wang L, Qu C, Zhang C, Hong L, et al. CdSe quantum dot (QD)-induced morphological and functional impairments to liver in mice. PloS one. 2011;6(9):e24406. https://doi.org/10.1371/journal.pone.0024406

Bellanger X, Schneider R, Dezanet C, Arroua B, Balan L, Billard P, et al. Zn2+ leakage and photo-induced reactive oxidative species do not explain the full toxicity of ZnO core Quantum Dots. Journal of hazardous materials. 2020;396:122616. https://doi.org/10.1016/j.jhazmat.2020.122616

Aldeek F, Balan L, Medjahdi G, Roques- Carmes T, Malval J-P, Mustin C, et al. Enhanced optical properties of core/shell/shell CdTe/CdS/ZnO quantum dots prepared in aqueous solution. The Journal of Physical Chemistry C. 2009;113(45):19458-67. https://doi.org/10.1021/jp905695f

Downloads

Published

2021-06-02

How to Cite

Aboulaich, A., Merlin, C., & Schneider, R. (2021). A Comparative Study of Water Dispersible Orange-Emitting Mn-Doped ZnSe/ZnS and CdTe/CdS Core/Shell Quantum Dots. Journal of Nanotechnology in Diagnosis and Treatment, 7, 1–9. https://doi.org/10.12974/2311-8792.2021.07.1

Issue

Section

Articles