Structure and Properties of Substituted Gold Clusters
DOI:
https://doi.org/10.12974/2311-8792.2014.02.02.2Keywords:
Nanoparticles, cage structure, endohedral gold clusters, gold nanoparticles, 5d-elementsAbstract
Structure and stability of some substituted gold nanoparticles were investigated by quantum chemical calculations. It was found that terminal SH and SiO4H3 groups can substitute gold atoms without changes of regular structure in positions, where the number of Au-Au bonds does not exceed three. It was also revealed that neutral and charged endohedral clusters Au12M (M = Hf, Ta, W, Re, Os) form stable symmetrical or quasi-symmetrical structures for different values of total cluster charge. The latter property makes possible attachment/ detachment of functional ligands, and could have a potential for drug delivery.
References
Yarzhemsky VG, Battocchio C. The structure of gold nanoparticles and Au based thiol self-organized monolayers. Russ. J. Inorg. Chem. 2011; 56(14): 2147-13. http://dx.doi.org/10.1134/S003602361114004X
Battocchio C, Fratoddi I, Venditti I, Yarzhemsky VG, Norov Yu V, Russo MV, Polzonetti G. EXAFS in total reflection (reflEXAFS) for the study of organometallic Pd(II) thiol complexes based self-assembled monolayers on gold. Chem. Phys. 2011; 379: 92-7. http://dx.doi.org/10.1016/j.chemphys.2010.11.010
Vitale F, Fratoddi I, Battocchio C, Piscopiello E, Tapfer L, Russo MV, Polzonetti G, Giannini C. Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterisation. Nanoscale Res. Lett. 2011; 6(1): 103-9. http://dx.doi.org/10.1186/1556-276X-6-103
Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, et al. Demonstration of a spaser-based nanolaser. Nature Lett. 2009; 460: 1110-3. http://dx.doi.org/10.1038/nature08318
Bernadotte S, Evers F, Jacob C. Plasmons in molecules. J Phys Chem. C. 2013; 117(4): 1863-16. http://dx.doi.org/10.1021/jp3113073
Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts of chemical research. Acc. Chem. Res. 2008; 41(12): 1721-30. http://dx.doi.org/10.1021/ar800035u
Buzulukov Yu P, Arianov EA, Demin VF, Safenkova IV, Gmoshinski IV, Tutelyan VA. Bioaccumulation of silver and gold nanoparticles in organs and tissues of rats studied by neutron activation analysis. Biol. Bull. 2014; 41(3): 255-9. http://dx.doi.org/10.1134/S1062359014030042
Jeynes JCG, Merchant MJ, Spindler A, Wera AC, Kirkby KJ. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Phys. Med. Biol. 2014; 59(2): 6431. http://dx.doi.org/10.1088/0031-9155/59/21/6431
Fratoddi I, Venditti I, Cametti C, Russo MV. How toxic are gold nanoparticles? The state of the art. Nano Res. DOI: 10.1007/s12274-014-0696-4
Hakkinen H, Moseler M, Landman U. Bonding in Cu, Ag and Au clusters: relativistic effects and surprises. Phys. Rev. Lett. 2002; 89: 033401-4. http://dx.doi.org/10.1103/PhysRevLett.89.033401
Xiong X-G, Xu W-H, Li J, Pyykko P. Aspects of bonding in small gold clusters. Int. J. Mass Spectr. 2013; 354-355: 15-4. http://dx.doi.org/10.1016/j.ijms.2013.08.006
Sekiyama A, Yamaguchi J, Higashiya A, Obara M, Sugiyama H, Kimura MY, et al. The prominent 5d-orbital contribution to the conduction electrons in gold. New J. Phys. 2010; 12: 043045-11. http://dx.doi.org/10.1088/1367-2630/12/4/043045
Yarzhemsky VG, Norov Yu V, Murashov SV, Battocchio C, Fratoddi I, Venditti I, Polzonetti G. Quantum chemical modeling of interaction between gold nanoclusters and thiols. Inorganic Materials 2010; 46(9): 924-7. http://dx.doi.org/10.1134/S0020168510090025
Serapian SA, Bearpark MJ, Bresme F. The shape of Au8: Gold leaf or gold nugget. Nanoscale 2013; 5(14): 6445-13. http://dx.doi.org/10.1039/c3nr01500a
Bulushu S, Zeng XC. Structures and relative stability of neutral gold clusters: Aun (n=15-19). J. Chem. Phys. 2006; 125: 154303-5. http://dx.doi.org/10.1063/1.2352755
Gu X, Ji M, Wei SH, Gong XG. AuN clusters (N-32,33,34,35) Cagelike structures of pure metal atoms. Phys. Rev. B. 2004; 70: 205401-5. http://dx.doi.org/10.1103/PhysRevB.70.205401
Oviedo J, Palmer RE. Amorphous structures of Cu, Ad and Au nanoclusters from first principles calculations. J. Chem. Phys. 2002; 117(12): 9548-4. http://dx.doi.org/10.1063/1.1524154
Johansson MP, Sundlholm D, Vaara J. Au32: A 24-Carat Golden Fullerene. Angew Chem. Int. Ed. 2004; 43: 2678-4. http://dx.doi.org/10.1002/anie.200453986
Karttunen A, Linnolahti M, Pakkanen TA, Pyykko P. Icosahedral Au72: a predicted chiral and spherically aromatic golden fullerene. Chem. Comm. 2008; 465-3.
Li J, Li X, Zhai HJ, Wang LS. Au20 a tetrahedral cluster. Science 2003; 299: 864-4. http://dx.doi.org/10.1126/science.1079879
Pyykko P, Runeberg N. Icosahedral WAu12: A predicted closed shell species, stabilized by aurophilic attraction and relativity and accord with the 18-electron rule. Angew Chem. Int. Ed. 2002; 41: 2174-3. http://dx.doi.org/10.1002/1521- 3773(20020617)41:12<2174::AID-ANIE2174>3.0.CO;2-8
Li X, Kiran B, Li J, Zhai HJ, Wang LS. Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. Angew Chem. Int. Ed. 2002; 41: 4786- 4. http://dx.doi.org/10.1002/anie.200290048
Zhai HJ, Li J. Wang LS. Icosahedral gold cage clusters M@Au-12 (M=V, Nb and Ta). Chem. Phys. 2004; 121(17): 8369-6.
Munoz-Castro A. Golden endohedral main-group clusters,
[E@Au12]q-: theoretical insights. J. Phys. Chem. Lett. 2013; 4(19): 3363-4.
Rodrigues-Ortiz G, Tellez-Vasquez O, Gutierrez-Wing C, Esparza R, Perez R. Study of the structure and vibrational spectra of functionalizad Au nanoparticles: Theoretical and experimental results. Mater. Sci. Forum 2013; 755: 83-7. http://dx.doi.org/10.4028/www.scientific.net/MSF.755.83
Das A, Li T, Nobusada K, Zheng C, Rosi NL, Jin R. Total structure and optical properties of a phospine/thiolateprotected Au24 nanocluster. J. Amer. Chem. Soc. 2013; 135: 18264-4. http://dx.doi.org/10.1021/ja409177s
Schwerdtfeger P. Gold goes nano-from small clusters to lowdimensional assemblies. Angew. Chem. Int. Ed. 2003; 42: 1892-4. http://dx.doi.org/10.1002/anie.200201610
Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007; 318(5849): 430-3. http://dx.doi.org/10.1126/science.1148624
Long J, Qiu YX, Chen XY, Wang. Stable geometric and electronic structures of gold-coated nanoparticles M@Au12 (M = 5d Transition Metals, from Hf to Hg): Ih or Oh J. Phys. Chem. C 2008; 112: 12646-12652.
Furche F, Ahlrichs R, Weis P, Jacob C, Gilb S, Bierweiler T, Kappes MM. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J. Chem. Phys. 2002; 117(15): 6982-6990. http://dx.doi.org/10.1063/1.1507582
Bulusu S, Li X, Wang LS, Zeng HC. Evidence of hollow golden cages. Proceedings of NAS USA 2006; 103(22): 8326-8330. http://dx.doi.org/10.1073/pnas.0600637103
Kahaly M, Ghosh P, Narasimhan S, Waghmare UV. Size dependence of structural, electronic and optical properties of selenium nanowires: A first principal study. J. Chem. Phys. 2008; 128: 044718. http://dx.doi.org/10.1063/1.2824969