Roles of Nanotechnology in Diagnosis and Treatment of Tuberculosis
DOI:
https://doi.org/10.12974/2311-8792.2013.01.01.3Keywords:
Diagnosis, nanotechnology, treatment, tuberculosis.Abstract
Nanotechnology has been believed for many years ago to offer new methods for both diagnosis and treatment of tuberculosis which is globally infectious disease burden in many countries, especially in developing and under-developing countries. Nanotechnological diagnosis of tuberculosis is expected to cost cheaper than many currently available diagnostic tools. Many researches are currently ongoing in the field of synthetic carriers for antituberculosis chemotherapy both oral and inhaled routes while the potentially curative drugs are available for over 50 years.
References
Hari BNV, Chita KP, Bhimavarapu R, Karunakaran P, Muthukrishnan N, Rani BS. Novel technologies: a weapon against tuberculosis. Indian J Pharmacol 2010; 42(6): 338- 44. http://dx.doi.org/10.4103/0253-7613.71887
Wang S, Inci F, De Libero G, Singhal A, Demirci U. Point-ofcare assays for tuberculosis: role of nanotechnology/ microfluidics. Biotechnol Adv 2013; 31(4): 438-49. http://dx.doi.org/10.1016/j.biotechadv.2013.01.006
Mathuria JP. Nanoparticles in tuberculosis diagnosis, treatment and prevention: a hope for future. Dig J Nanomat Bios 2009; 4(2): 309-12.
Fakruddin Md, Hossain Z, Afroz H. Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnology 2012; 10(4): 31.
Veigas B, Doria G, Baptista PV. Nanodiagnostics for tuberculosis. In: Pere-Joan Cardona, Ed. Understanding tuberculosis: Global experiences and innovative approaches to the diagnosis. Rijeka, Croatia: InTech 2012; pp. 257-76. http://dx.doi.org/10.5772/30463
The University at Buffalo. Novel quantum dot technology expected to impact tuberculosis treatment. http://www.nano. org.uk.news/1112/. (accessed March 23, 2013).
Chun AL. Nanoparticles offer hope for TB detection. Nat Nanotechnol 2009; 4(11): 698-9. http://dx.doi.org/10.1038/nnano.2009.322
Pandey R, Khuller GK. Nanotechnology-based drug delivery system ((s) for the management of tuberculosis. Indian J Exp Biol 2006; 44(5): 357-66.
Banyal S, Malik P, Tuli HS, Mukherjee TK. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr Opin Pulm Med 2013; Feb 20.
[Epub ahead of print]. http://dx.doi.org/10.1097/MCP.0b013e32835eff08
Martis EA, Badve RR, Degwekar MD. Nanotechnology-based devices and applications in medicine: an overview. Chron Young Sci 2012; 3(1): 68-73. http://dx.doi.org/10.4103/2229-5186.94320
Zhang L, Pornpattananangkul D, Hu CMJ, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010; 17(6): 585-94. http://dx.doi.org/10.2174/092986710790416290
Jain A, Jain A, Gulbake A, Shilpi S, Hurkat P, Jain SK. Peptide and protein delivery using new drug delivery system. Crit Rev Ther Carrier Syst 2013; 30(4): 293-329. http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.20130 06955
Gupta A, Pandya SM, Mohammad I, Agrawal AK, Mohan M, Misra A. Particulate pulmonary delivery systems containing anti-tuberculosis agents. Crit Rev Ther Drug Carrier Syst 2013; 30(4): 277-91. http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.20130 05684
Bhardwaj A, Kumar L, Narang RK, Murthy RSR. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Artif Cells Blood Nanomed Biotechnol 2013; 41(1): 52-9. http://dx.doi.org/10.3109/10731199.2012.702316
Ranjita S, Loaye AS, Khalil M. Present status of nanoparticle research for treatment of tuberculosis. J Phar Pharmaceut Sci 2011; 14(1): 100-16.
Jain CP, Vyas SP. Preparation and characterization of niosomes containing rifampicin for lung targeting. J Microencapsul 1995; 12(4): 401-7. http://dx.doi.org/10.3109/02652049509087252
Mostafa Mohamed YM. Study of niosomal encapsulation of the antitubercular drugs, isoniazid. 2010, University of Cairo, M.Sc. thesis.
Karki R, Mamatha GC, Subramanya G, Udupa N. Preparation, characterization and tissue disposition of niosomes containing isoniazid. Rasayan J Chem 2008; 2(2): 224-7.
Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 2006; 48(3): 171-6.
Pandey R, Khuller GK. Chemotherapeutic potential of alginate-chitosan microspheres as anti-tubercular drug carriers. J Antimicrob Chemother 2004; 53(4): 635-40. http://dx.doi.org/10.1093/jac/dkh139
Sabitha P, Ratna JV, Reddy KR. Design and evaluation of controlled release chitosan-calcium alginate microcapsules of antitubercular drugs for oral use. Int J ChemTech Res 2010; 2(1): 88-98.
Rajan M, Raj V. Encapsulation, characterization and in-vitro release of anti-tuberculosis drug using chitosan-polyethylene glycol nanoparticles. Int J Pharm Pharm Sci 2012; 4(4): 255- 9.
Silva M, Lara AS, Leite CQF, Ferreira EI. Potential tuberculotic agents: micelle-forming copolymer poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid. Arch Pharm (Weinheim) 2001; 334(6): 189-93. http://dx.doi.org/10.1002/1521-4184(200106)334:6<189::AIDARDP189> 3.0.CO;2-6
Silva M, Ferreira EI, Leite CQF, Sato DN. Preparation of polymeric micelles for use as carriers of tuberculostatic drugs. Trop J Pharm Res 2007; 6(4): 815-24. http://dx.doi.org/10.4314/tjpr.v6i4.14665
Silva M, Ricelli NL, El Seoud O, Valentim CS, Ferreira AG, Sato DN, et al. Potential tuberculostatic agent: micelleforming pyrazinamide prodrug. Arch Pharm (Weinheim) 2006; 339(6): 283-90. http://dx.doi.org/10.1002/ardp.200500039
Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 2006; 14(8): 546-56. http://dx.doi.org/10.1080/10611860600825159
Pandey R, Zahoor A, Sharma S, Khuller GK. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb) 2003; 83(6): 373-8. http://dx.doi.org/10.1016/j.tube.2003.07.001
Schmidt C, Bodmeier R. Incorporation of polymeric nanoparticles into solid dosage forms. J Control Release 1999; 57(2): 115-25. http://dx.doi.org/10.1016/S0168-3659(98)00108-4
Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother 2004; 54(4): 761-6. http://dx.doi.org/10.1093/jac/dkh411
Kayser O, Olbrich C, Croft SL, Kiderlen AF. Formulation and biopharmaceutical issues in the development of drug delivery systems for antiparasitic drugs. Parasitol Res 2003; 90(Suppl 2): S63-70. http://dx.doi.org/10.1007/s00436-002-0769-2
Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 2005; 172(12): 1487-90. http://dx.doi.org/10.1164/rccm.200504-613PP
Kaur G, Narang RK, Rath G, Goyal AK. Advances in pulmonary delivery of nanoparticles. Artif Cells Substit Immobil Biotechnol 2012; 40(1-2): 75-96. http://dx.doi.org/10.3109/10731199.2011.592494
Clemens DL, Lee B-Y, Xue M, Thomas CR, Meng H, Ferris D, et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 2012; 56(5): 2535-45. http://dx.doi.org/10.1128/AAC.06049-11