Superparamagnetic Nanoparticles: A Biodistribution Study Using Xenopus laevis Embryos
DOI:
https://doi.org/10.12974/2311-8792.2013.01.01.2Keywords:
Xenopus laevis, embryo, superparamagnetic nanoparticle, biodistribution.Abstract
Various in-vivo biological models have been proposed for studying the interactions of nanomaterials with biological systems. Recently, there has been a significant increase in interest in the use of non-mammalian embryos, such as the frog Xenopus laevis as valid models for research in nanomedicine. In the present work, we demonstrate that X. laevis is a powerful model for the study of the biodistribution of superparamagnetic nanoparticles (SPION), extensively used in biomedical field for cell separation, MRI diagnostics and magnetic drug-targeting.
10 nl of 25 mg/ml of SPIONs (nano-screen MAG/ARA 200 nm, Chemicell) were microinjected. The biodistribution of SPIONs, following cardiac or pronephros injection of anesthetized frog larvae at stage 37, was studied by both in-vivo florescence and by Prussian blue staining of paraffin sections of the larvae after 24, 48, 72 or 96 hours (at 14 °C). The study confirmed that SPIONs diffused from either injection site by blood stream to all larval organs, being still present after 96 hours of injection.
References
Fako VE, Furgeson DY. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 2009; 61: 478-86. http://dx.doi.org/10.1016/j.addr.2009.03.008
Tseng CL, Peng CL, Huang JY, Chen JC, Lin FH. Gelatin nanoparticles as gene carriers for transgenic chicken applications. J Biomater Appl 2012; DOI: 0.1177/0885328211434089.
Nieuwkoop PD, Faber J. Normal Table of Development of Xenopus laevis (Daudin). North- Holland, Amsterdam: Elsevier 1967.
Gao JH, Gu HW, Xu B. Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Accounts Chem Res 2009; 42: 1097-107. http://dx.doi.org/10.1021/ar9000026
Indira TK, Lakshimi PK. Magnetic Nanoparticles: A Review. Int J Pharm Sci Nanotech 2010; 3: 8.
Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Physics D-Appl Phys 2003; 36: R167-R81.
Getzlaff M. Fundamentals of Magnetism, Springer, New York, NY, USA 2008.
Bulte JWM. In vivo MRI cell tracking: clinical studies. Am J Roentgenol 2009; 193: 314-25. http://dx.doi.org/10.2214/AJR.09.3107
Kim HS, Oh SY, Joo HJ, Son K-R, Song I-C, Moon WK. The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed 2010; 23: 514-22. http://dx.doi.org/10.1002/nbm.1487
Wu S, Zhang L, Zhong J, Zhang Z. Dual contrast magnetic resonance imaging tracking of iron-labeled cells in vivo. Cytotherapy 2010; 12: 859-69. http://dx.doi.org/10.3109/14653241003587652
Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials 2008; 29: 4012-21. http://dx.doi.org/10.1016/j.biomaterials.2008.07.004
Wahajuddin SA. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 2012; 7: 3445-71. http://dx.doi.org/10.2147/IJN.S30320
Berensmeier S. Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 2006; 73: 495-504. http://dx.doi.org/10.1007/s00253-006-0675-0
Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, Gänsbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy 2002; 9: 102-109. http://dx.doi.org/10.1038/sj.gt.3301624
Jordan KM. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011; 103: 317-24. http://dx.doi.org/10.1007/s11060-010-0389-0
Newport J, Kirschner M. A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 1982; 30: 687-96. http://dx.doi.org/10.1016/0092-8674(82)90273-2
Sive HL, Grainger RM, Harland RM. Early Development of Xenopus laevis: A Laboratory Manual, Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press 2000.
Bacchetta R, Santo N, Fascio U, Moschini E, Freddi S, Chirico G, et al. Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development. Nanotoxicology 2012; 6: 381- 98. http://dx.doi.org/10.3109/17435390.2011.579634
Hu X, Cook S, Wang P, Hwang HM. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 2009; 407: 3070-2. http://dx.doi.org/10.1016/j.scitotenv.2009.01.033
Kasemets K, Ivask A, Dubourguier HC, Kahru A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 2009; 23: 1116- 22. http://dx.doi.org/10.1016/j.tiv.2009.05.015
Lai JC, Lai MB, Jandhyam S, Dukhande VV, Bhushan A, Daniels CK, et al. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomed 2008; 3: 533-45.
Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 2008; 21: 1726-32. http://dx.doi.org/10.1021/tx800064j
Lin S, Zhao Y, Xia T, Meng H, Ji Z, Liu R, et al. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 2011; 5: 7284-95. http://dx.doi.org/10.1021/nn202116p
Lan L, Vitobello A, Bertacchi M, Cremisi F, Vignali R, Andreazzoli M, et al. Noggin elicits retinal fate in Xenopus animal cap embryonic stem cells. Stem Cells 2009; 27: 2146- 52. http://dx.doi.org/10.1002/stem.167
Pearl EJ, Grainger RM, Guille M, Horb ME. Development of Xenopus Resource Centers: The National Xenopus Resource and the European Xenopus Resource Center. Genesis 2012; 50: 155-63. http://dx.doi.org/10.1002/dvg.22013
Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 98: 1759-62. http://dx.doi.org/10.1126/science.1077194
Stylianou P, Skourides PA. Imaging morphogenesis, in Xenopus with Quantum Dot Nanocrystals. Mech Dev 2009; 126: 828-41. http://dx.doi.org/10.1016/j.mod.2009.07.008
Gussin HA, Tomlinson ID, Little DM, Warnement MR, Qian H, Rosenthal SJ, et al. Binding of muscimol-conjugated quantum dots to GABAC receptors. J Am Chem Soc 2006; 128: 15701-13. http://dx.doi.org/10.1021/ja064324k
Charalambous A, Antoniades I, Christodoulou N, Skourides PA. Split-Inteins for Simultaneous, site-specific conjugation of Quantum Dots to multiple protein targets in vivo. J Nanobiotechnol 2011; 9: 37. http://dx.doi.org/10.1186/1477-3155-9-37
Oldenburg A, Toublan F, Suslick K, Wei A, Boppart S. Magnetomotive contrast for in vivo optical coherence tomography. Opt Express 2005; 13: 6597-14. http://dx.doi.org/10.1364/OPEX.13.006597