Plasmonic Nanometric Optical Tweezers in an Asymmetric Space of Gold Nanostructured Substrates
DOI:
https://doi.org/10.12974/2311-8792.2013.01.01.1Keywords:
Plasmonic optical tweezers, near field optics, optical trapping, plasmonic dialysis of viruses ex vivo, femtosecond laser.Abstract
We present a plasmonic near-field tweezers in water with gold nanosphere pairs on various substrates. An enhanced near field localized in the nanometric gap space pumped with 800 nm femtosecond laser is to trap and kill small viruses. The maximal optical trapping force obtained is larger than 20 pN at an incident optical peak intensity of 1 mW/mm2. We also propose a new system consisting of a gold nanosphere and a gold nanoridge. In this system, the enhanced near field stems mainly from the image charge effect, exhibiting an optical trapping in an asymmetric space. The calculated trapping force is equivalent to the system of gold nanosphere pairs. The trapped viruses may easily be inactivated using a unfocused 800 nm femtosecond laser.
References
Ashkin A, Driedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 1986; 11(5): 288-90. http://dx.doi.org/10.1364/OL.11.000288
Arlt J, Garces-Chavez V, Sibbett W, Dholakia K. Optical micromanipulation using a Bessel light beam. Optics Comm 2001; 197: 239-45. http://dx.doi.org/10.1016/S0030-4018(01)01479-1
Kuga T, Trii Y, Shiokawa N, Hirano T. Novel optical trap of atoms with a doughnut beam. Phys Rev Lett 1997; 78(25): 4713-16. http://dx.doi.org/10.1103/PhysRevLett.78.4713
Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Optics Comm 2002; 207(1-6): 169-75. http://dx.doi.org/10.1016/S0030-4018(02)01524-9
Mcleod E, Arnold CB. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotech 2008; 3: 413-17. http://dx.doi.org/10.1038/nnano.2008.150
Agate B, Brown CTA, Sibbett W, Dholakia K. Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt Express 2004; 12(13): 3011-17. http://dx.doi.org/10.1364/OPEX.12.003011
Savitski VG, Metzger NK, Calvez S, Burs D, Sibbett W, Brown CTA. Optical trapping with “on-demand” two-photon luminescence using Cr:LiSAF laser with optically addressed saturable Bragg reflector. Opt Express 2012; 20(7): 7066-70. http://dx.doi.org/10.1364/OE.20.007066
Juan ML, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photonics 2011; 5(6): 349-56. http://dx.doi.org/10.1038/nphoton.2011.56
Righini M, Zelenina AS, Girard C, Quidant R. Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys 2007; 3: 477-80. http://dx.doi.org/10.1038/nphys624
Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y. Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2008; 2: 365-70. http://dx.doi.org/10.1038/nphoton.2008.78
Xu H, Bjerneld EJ, Kall M, Borjesson L. Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering. Phys Rev Lett 1999; 83(21): 4357-60. http://dx.doi.org/10.1103/PhysRevLett.83.4357
Boltasseva A. Plasmonic components fabrication via nanoimprint. J Opt A: Pure Appl Opt 2009; 11(11): 114001- 11. http://dx.doi.org/10.1088/1464-4258/11/11/114001
Melentiev PN, Zablotskiy AV, Lapashin DA, Sheeshin EP, Baturin AS, Balykin VI. Nanolithography based on an atom pinhole camera. Nanotechnology 2009; 20(23): 235301-7. http://dx.doi.org/10.1088/0957-4484/20/23/235301
Lee W, Lee SY, Briber RM, Rabin O. Self-assembled SERS substrates with tunable surface plasmon resonances. Adv Funct Mater 2011; 21(18): 3424-29. http://dx.doi.org/10.1002/adfm.201101218
Haynes CL, Duyne RPV. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 2001; 105(24): 5599-11. http://dx.doi.org/10.1021/jp010657m
Huang W, Qian W, El-Sayed MA. Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses. J Appl Phys 2005; 98(11): 114301-8. http://dx.doi.org/10.1063/1.2132515
Song KH, Lee HY. Fabrication of two-dimensional photonic crystals with Ge2Sb2Te5 nanohole arrays by nanosphere lithography. International J Modern Physics B 2009; 23(6-7): 1300-305. http://dx.doi.org/10.1142/S0217979209060853
Kuznetsov AI, Kiyan R, Chichkov BN. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. Opt Express 2010; 18(20): 21198-203. http://dx.doi.org/10.1364/OE.18.021198
Kuznetsov AI, Evlyukhin AB, Gonç alves MR, Reinhardt C, Koroleva A, Arnedillo ML, et al. Laser fabrication of largescale nanoparticle arrays for sensing applications. ACS Nano 2011; 5(6): 4843-49. http://dx.doi.org/10.1021/nn2009112
Hartling T, Alaverdyan Y, Hille A, Wenzel MT, Kall M, Eng LM. Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition. Opt Express 2008; 16(16): 12362-71. http://dx.doi.org/10.1364/OE.16.012362
Alexander KD, Hampton MJ, Zhang S, Dhawan A, Xu H, Lopez R. A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays. J Raman Spectrosc 2009; 40(12): 2171-75. http://dx.doi.org/10.1002/jrs.2392
Yan B, Thubagere A, Premasiri WR, Ziegler LD, Negro LD, Reinhard BM. Engineered SERS substrates with multiscale signal enhancement: Nanoparticle cluster arrays. ACS Nano 2009; 3(5): 1190-202. http://dx.doi.org/10.1021/nn800836f
Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR. Optical properties of two interacting gold nanoparticles. Opt Comm 2003; 220(1-3): 137-41. http://dx.doi.org/10.1016/S0030-4018(03)01357-9
Yang SC, Kobori H, He CL, Lin MH, Chen HY, Li C, et al. Plasmon hybridization in individual gold nanocrystal dimers: Direct observation of bright and dark modes. Nano Lett 2010; 10(2): 632-37. http://dx.doi.org/10.1021/nl903693v
Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ. Heterodimers: Plasmonic properties of mismatched nanoparticle pairs. ACS Nano 2010; 4(2): 819-32. http://dx.doi.org/10.1021/nn9017312
Slaughter LS, Wu Y, Willingham BA, Nordlander P, Link S. Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. ACS Nano 2010; 4(8): 4657-66. http://dx.doi.org/10.1021/nn1011144
Du CL, Du CJ, You YM, He CJ, Luo J, Shi DN. Surface- Enhanced Raman Scattering from individual Au nanoparticles on Au films. Plasmonics 2012; 7: 475-78. http://dx.doi.org/10.1007/s11468-012-9331-y
Nedyalkov N, Sakai T, Miyanishi T, Obara M. Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring. J Physics D 2006; 39(23): 5037-42. http://dx.doi.org/10.1088/0022-3727/39/23/021
Nedyalkov NN, Atanasov PA, Obara M. Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser. Nanotechnology 2007; 18(30): 305703- 7. http://dx.doi.org/10.1088/0957-4484/18/30/305703
Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. Sensitive optical biosensors for unlabeled targets: A review. Anal Chem Acta 2008; 620: 8-26. http://dx.doi.org/10.1016/j.aca.2008.05.022
Dantham VR, Holler S, Kolchenko V, Zan W, Arnold S. Taking whispering gallery-mode single virus detection and sizing to the limit. Appl Phys Lett 2012; 101(4): 043704-4. http://dx.doi.org/10.1063/1.4739473
Terakawa M, Takeda S, Tanaka Y, Obara G, Miyanishi T, Sakai T, et al. Enhanced localized near field and scattered far field for surface nanophotonics applications. Progress in Quantum Electron 2012; 36(1): 194-71. http://dx.doi.org/10.1016/j.pquantelec.2012.03.006
Miyanishi T, Sakai T, Nedyalkov NN, Obara M. Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation. Appl Phys A 2009; 96(4): 843-50. http://dx.doi.org/10.1007/s00339-009-5313-0
Palik ED. Handbook of Optical Constants of Solids. San Diego, CA: Academic Press 1998.
Tsen KT, Tsen SWD, Sankey OF, Kiang JG. Selective inactivation of micro-organisms with near-infrared femtosecond laser pulses. J Phys: Condens Matter 2007; 19(47): 472201-7. http://dx.doi.org/10.1088/0953-8984/19/47/472201
Tsen KT, Tsen SWD, Hung CF, Wu TC, Kiang JG. Selective inactivation of human immunodeficiency virus with subpicosecond near-infrared laser pulses. J Phys: Condens Matter 2008; 20(25): 252205-4. http://dx.doi.org/10.1088/0953-8984/20/25/252205
Serey X, Mandal S, Erickson D, Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials. Nanotechnology 2010; 21(30): 305202-8. http://dx.doi.org/10.1088/0957-4484/21/30/305202