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Abstract: Kinases are phosphate catalysing enzymes that have traditionally proved difficult to target against ligands, 
and hence inefficacious in drug development. There are two colluding reasons for this. First is the issue of specificity. 
The homogeneity that exists between the kinase ATP-binding pockets makes it a non-realisable target to develop 
compounds that would inhibit only one out of 538 protein kinases encoded by the human genome, without inhibiting 
some of the others. Second, producing compounds with the required efficacy to rival the millimolar ATP concentrations 
present in cells is stoichiometrically inefficient. This study uses a recently propounded computational strategy based on 
Structure Based Virtual Screening (SBVS) that was previously benchmarked on 999 DUD-E protein decoys 
(Chattopadhyay et al, Int Sc. Comp. Life Sciences 2022), to rank potential ligands, or by extension rank kinase-ligand 
pairs, identifying best matching ligand:kinase docking pairs. The results of the SBVS campaign employing several 
computational algorithms reveal variations in the preferred top hits. To address this, we introduce a novel consensus 
scoring algorithm by sampling statistics across four independent statistical universality classes, statistically combining 
docking scores from ten docking programs (DOCK, Quick Vina-W, Vina Carb, PLANTS, Autodock, QuickVina2, 
QuickVina21, Smina, Autodock Vina and VinaXB) to create a holistic SBVS formulation that can identify active ligands 
for any target. Our results demonstrate that CS provides improved ligand:kinase docking fidelity when compared to 
individual docking platforms, requiring only a small number of docking combinations, and can serve as a viable and 
thrifty alternative to expensive docking platforms. 

Keywords: Statistical Modelling, Molecular Docking, Consensus Scoring, Virtual Screening, Multiple linear 
regressions. 

1. INTRODUCTION 

Drug Repurposing or Repositioning, abbreviated 
DR, is the new technological gateway in drug 
development, accounting for about 30% of 
FDA-approved medications and vaccines. DR is the 
process of discovering new drugs or indications, 
repurposing the existing, or even discontinued, lines of 
pharmaceuticals [1]. One of the primary goals of health 
organisations across the globe is to guarantee that new 
chemical entities for the treatment of diseases of any 
kind are both safe and harmless while still being 
efficient [2]. Seeking a suitable indication for an existing 
drug, on the other hand, can be quite efficient. As 
recognised medications have known pharmacokinetic 
imprints, phase 1 trials can often be bypassed [3, 4]. 

Docking is a widely used computational method to 
predict the likelihood of meaningful match between a 
kinase and (one or more) ligand. Although numerous 
docking platforms are available including Autodock, 
Dock, Vina, PLANT and so on, the comparative 
prediction for the best match mostly do not agree 
between the different platforms raising the inevitable 
challenge of identifying a unique decoder that can 
provide a holistic benchmark of accuracy. 
Unfortunately, no ‘perfect’ docking kit has been found, 
especially since the choice seems to vary widely with  
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changing molecules with varying data, pointing to the 
need for alternative avenues of drug repurposing [5-7]. 
The problem is further compounded by the volumes of 
data that need to be processed for a holistic appraisal 
of the (3-dimensionl) molecules docked. This can be 
easily understood from a tentative estimation of the 
number of potential ligand:kinase matches that each 
computational algorithm needs to evaluate; for each 
3-dimensional protein mapped against, say, a pool of 
1000 ligands, the number of unconstrained 
combinations is 33000, an enormous number. In silico 
studies, using both ligand and structure based 
techniques [8, 9] are now being used and finding 
applications in the pharmaceutical industry [10, 11]. 

1.1. Structure Based Drug Design 

Structure-based drug discovery (SBDD) or 
Structure-Based Drug Design (SBDD) is a fast-growing 
technology in molecular biology and bioinformatics that 
exhaustively studies the 3D structures of biomolecules 
like proteins, identified as targets, including small 
molecule compounds. The structural qualities and 
features of these molecules, as well as their 
associations with one other at the atomic level, may 
disclose information of the underlying processes, such 
as inhibition or activation procedures, utilizing X-ray 
crystallographic or NMR structures. SBDD can 
determine how a small ligand affects the structure and 
function of a protein, such as whether it hinders or 
stimulates that target [12, 13]. 
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Historically, drug discovery did not depend on the 
molecular target of a specific disease, and discovering 
a treatment was essentially by chance in comparison to 
the amount of expertise that prevails in today's drug 
design [14]. However, by the mid-1980s, and owing to 
breakthroughs in structural biology and bioinformatics, 
it was feasible to develop drugs utilizing the target 
protein's 3D structure [15, 16]. 

SBDD was not regarded an essential in drug design 
in its initial days. Of late though, these approaches 
have been greatly enhanced, and they are strategically 
implemented nearly in all stages of drug design. SBDD 
is made up of approaches including molecular docking 
and molecular dynamics modelling, as well as 
instruments that deal primarily with a molecular target, 
the target protein, and small molecule compounds. 
These techniques can assist us in comprehending the 
role of each constituent and how we might utilise them 
to enhance the effectiveness of a particular drug [17, 
18]. For instance, molecular dynamics methods 
identified how a handful of mutations in BCR-ABL 
kinase proteins may result in severe drug resistance 
[19]. Structure-based drug design is now often utilised 
for lead discovery and optimization, that are partially 
based on Virtual High-Throughput Screening (VHTS) 
[20]. 

Of late, nanotechnology is making great inroads 
towards micro-level drug delivery. Technologies 
include hydrophilic carriers of proteins and siRNA [21], 
where polymeric hydrophiles are produced through 
controlled reactions leading to higher levels of drug 
specificity, to repurposing Sil Fibroins (FB), a naturally 
occurring protein polymer as an anticancer agent [22]. 
Another prospective approach is in 3D technology 
towards regenerative drug delivery [23] as an 
alternative to conventional drugs. Many of these novel 
new inroads have been discussed in a recent review 
article [24]. 

1.2. Virtual Screening 

High-throughput screening (HTS) is an optimal 
screening approach that has been employed in most 
logical drug design in pharmaceutical research and 
development (R&D) [25, 26]. Once molecular target of 
CML, BCR-ABL are identified, sizable libraries of small 
molecule compounds are filtered to recognize a 
compound that can restrict this tyrosine kinase protein. 
The first kinase-drug Imatinib developed using such a 
rational technique paved the way for the design of 
many other kinase inhibitors. Unfortunately, only major 
pharmaceutical corporations can manage to conduct 
such a huge and costly experiment, but academic 
research often have to rely on less costly alternatives 
like VHTS [27].  

VHTS is a computational screening approach that is 
commonly used to screen in silico collections of 
chemical libraries to determine the target receptor's 
binding affinity with the library compounds [28]. This is 
accomplished by employing a scoring system that 
computes the compatibility of the target receptor with 
the ligands. HTS and vHTS are complimentary 
approaches [29], and VHTS has been demonstrated to 
minimize false positives in HTS [30]. Several VHTS 
techniques have been used [31] and is being 
continuously upgraded. 

1.3. Molecular Docking 

Molecular docking is a widely used and effective 
structure-based in silico approach for predicting 
relationships between molecules and biological targets 
[10]. This is often performed by first anticipating the 
molecular orientation of a ligand within a receptor 
followed by assessing their compatibility using a 
scoring function [10]. Ligands, or novel therapeutic 
substances, can bind with pockets and cavities in 
proteins and enzymes, modifying their structure and, 
as a result, function. 

Small molecule kinase inhibitors like Imatinib, for 
instance, enter the ATP-binding pocket of BCR-ABL 
tyrosine kinase, fit within, and adhere to this binding 
pocket via functional groups that establish essential 
connections including hydrogen bonds and 
hydrophobic contacts. This can ultimately block this 
protein, causing CML to develop [32]. We can use 
molecular docking to filter a database of small molecule 
compounds and locate those that match a given pocket. 
However, generating multiple orientations and 
conformations of compounds, as provided by sampling 
algorithms, is insufficient for selecting an appropriate 
compound which can fit into a binding pocket. Since 
the primary objective of utilizing this approach is to 
locate "binders," not simply "fitters," the location of 
each functional group and appreciating their functions 
in binding are vitally crucial. As a result, further 
methods, known as scoring functions, must be utilised 
to score and rank all the conformations and 
orientations. Molecular docking approach are also used 
to analyse the fundamental processes of small 
molecules and to discover critical residues in the 
binding pockets. 

1.4. Scoring Functions 

Scoring Functions (SFs) are mathematical 
quantifiers for estimating or forecasting non-covalent 
binding energy, commonly referred to as "binding 
affinity" [33, 34]. SFs are primarily used to distinguish 
between correct and wrong conformations, as well as 
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to score various ligands based on their predicted 
binding affinities. Non-covalent or non-bonded assays 
have electrostatic and/or vander waals forcing defining 
their bond strengths. SF methods identify vectors 
comprising their energies, locations and bond lengths 
(separation of each ligand atom to the atoms of protein 
residues) to define numerical descriptors that can 
decode the best possible structural match between a 
kinase and its ligand inhibitor [35, 36]. Furthermore, in 
order to obtain more accurate findings, it is preferable 
to use other available scoring functions to score the 
docked postures, a process known as rescoring. 
DrugScore [37], X-Score, LigScore [38], and other 
rescoring scoring procedures are quite popular. 
Following ranking, promising binder can be discovered 
by meticulous investigations, which are sometimes 
referred to as hit compounds or "Hits" [39]. 

The locations and orientations of the ligands are 
likely to vary over the simulation period, and as a result 
of these changes, the binding affinity and binding free 
energies may alter frequently. As a result, computing 
these energies provides a clearer understanding of 
each of the ligand's motions. There are several 
techniques for determining these energies, including 
the popular classical scoring functions (empirical [43], 
force field [40], and knowledge based [44]), machine 
learning based [54], and so on. The classical force 
field-based SF quantifies binding energy by 
aggregating van der Waals and electrostatic attraction 
between protein-ligand atom pairs while accounting for 
the impact of enthalpy on energy [40]. Force 
field-based SF is often not adequate as it ignores 
entropy and the solvent effect [34]. Hence, by 
integrating ligand torsion entropy [41] and the 
solvation/de-solvation impact represented by explicit 
and implicit solvent models, the force field-based SF 
accuracy is enhanced. Empirical SFs [42] calculate a 
complex's binding affinity by adding biochemical 
descriptors like hydrogen bonds, hydrophobic effects, 
steric collisions, and so on. Linear regression analysis 
is used on a training set with known binding affinities to 
update the weights of the energy components for 
empirical SFs [43]. Knowledge-based SFs [44] use the 
inverse Boltzmann statistic theory to generate the 
appropriate pairwise potentials from three-dimensional 
structures of a wide variety of protein-ligand complexes. 
Machine-learning-based SFs [54], as opposed to 
traditional SFs with supposed mathematical functional 
form, use a range of machine-learning methods, such 
as support vector machine, random forest, neural 
network, deep learning, and so on. Whereas 
machine-learning-based SFs surpass traditional SFs 
[45, 46], they are rarely fully embedded into docking 
software and are instead utilised for rescoring. 

1.5. Consensus Scoring 

Regardless of the fact that several scoring functions 
have been devised, none are ideal in terms of reliability 
and universal application. Every scoring function has 
benefits and drawbacks. The consensus scoring 
approach has been created to enhance the chance of 
discovering right answers by integrating the scores 
from numerous scoring functions in order to take use of 
the benefits and balance the weaknesses of distinct 
scoring functions [43]. The crucial stage in consensus 
scoring is the development of an acceptable 
consensus scoring technique for individual scores, 
allowing real modes/binders to be distinguished from 
others [48. 49]. This entails the creation of a virtual 
screening pipeline using multiple docking platforms. 
For this study, we used 10 open sourced docking 
platforms (Qvina02, Qvina2.1, Autodock, 
Autodock-vina, Plant, Dock6, Smina, VinaXB, Qvina-w, 
and Vina-carb), followed by the use of consensus 
scoring combining estimates from all 10 docking 
modules through multiple statistical combinatorics to 
identify kinase:ligand hits towards the drug discovery 
process. To establish a consistent scoring 
methodology across all methodologies, post docking 
analysis use consensus scoring. 

Statistical measures such as (skewness-kurtosis, 
regression) form the basics of a consensus scoring 
protocol in addition to machine learning procedures. An 
essential ingredient for a successful consensus scoring 
campaign comprise either homogenous or 
heterogenous sets of scores. Scores generated from 
these programs differ in their units and signs reflecting 
the diverse origin of the different scoring functions, the 
approximations involved, and the parametrizations 
used across varying sets of biochemical propensity 
scales of choice. This necessitates a normalisation of 
scores (that widely vary across the docking platforms) 
before they can be combined towards a Consensus 
Scoring (CS) platform. Normalisation often uses rank 
transform, minimum-maximum scaling, or z-score 
scaling.  

A key target of this CS-project is to analyse the 
possibility of a multitarget drug which can help to tackle 
complex diseases, including multiple diseases, from a 
single drug channel.  

2. METHODS 

2.1. Target Preparation and Ligand Selection 

In this study, we have used 273 kinase protein 
structures retrieved from RCSB.org's Protein Data 
Bank (PDB) [50]. It is necessary to obtain the pdb file 
format. The native structures from the PDB database 
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are unsuitable because they lack hydrogen atoms and 
so have no charge. A simplistic process flow of the 
processes required to perform in silico repurposing 
utilizing molecular docking simulation methods for 
virtual screening necessitates the preparation of the 
protein structure that was done using the "Dock Prep" 
tool from the UCSF chimera visualization program [47].  

The kinase protein files downloaded are frequently 
in combination with an inhibitor that must be removed, 
but first the position of the inhibitor needs to be 
determined to obtain the coordinates of the target 
binding site. The files should also be free of 
crystallographic water molecules. However, before 
ensuing further computation, the holistic protein 
sequence is needed that is replete with any missing 
section. To do this, the MODELLER program [54] is 
utilised, which is controlled via an interface inside the 
USCF chimera. Also, our own decoder provided an 
alternative letter-to-sequence gateway 
(https://github.com/akchaste/PyScale/tree/master). 
This software can produce numerous models 
conforming to the idea of best structures that have the 
lowest DOPE (discrete optimized protein energy) score. 
Following the construction of the missing segments, 
hydrogen atoms and formal charges are added to the 
protein using the "Dock Prep" tool in the "Structure 
Editing" section. The protein structure is now ready for 
further analysis together with FDA authorized drugs 
that are obtained from the DrugBank database [55]. 
The structures are 2D, but 3D structures are required 
for virtual screening. Open Babel, a user-friendly 
program, is used to extract 3-dimensional protein 
structures of these drugs [56]. The hydrogens and the 
compounds' formal charge are then added. For docking, 
the compounds are separated and written in mol2 
format first, then transformed into multiple forms such 
as pdbqt, pdb, mol, and mol2, according to the docking 
algorithm's requirements. 

2.2. Structural Alignment 

Structures of homologous proteins are frequently 
similar. By comparing the geometry and 3D 
conformation of two structures, protein structural 
alignment tools may help uncover these commonalities. 
Protein structural alignment is also a useful technique 
for comparing projected models to Protein Data Bank 
template structures. Independent of sequence 
similarity, structural alignment makes it simple to detect 
regions of similarity between two or more structures. 
Following protein structural alignment, RMSD values 
for the aligned structures are evaluated to estimate 
their Euclidean distance from one another. Equivalence 
was achieved by aligning the targets using TM-align 
prior to docking. The procedure begins with selecting a 
template and then aligning other targets to it. 

2.3. Docking Ligands 

10 docking programs are randomly chosen from 
open-sourced literature. The applications are installed 
one at a time on the university's shared cluster. For 
example, Dock6 is first downloaded and then 
transferred to the cluster. The exported program files 
are then installed on the cluster. The programs 
occasionally offer a graphical interface but sacrificing 
ease of operation in favour of speed and clarity, we 
choose applications using terminals (substituting the 
Graphical User Interface) for bulk docking. Each of 
these docking software typically requires the following 
input files: (1) the prepared receptor file with an empty 
pocket, (2) the 3D structures of the prepared 
compounds in mol2 format, (3) a text file named 
Dock.in that contains the docking parameters, and (4) a 
text file called ligands.list of compound names.  

The receptor is now the target protein that is 
created in the previous stage. Since the binding site 
should be vacant, the ligand(s) must be removed. But 
first, the coordinates of the binding site are to be 
determined. Blind docking (where docking location 
coordinates are not supplied) is employed in various 
instances. To assay a cofactor or a coenzyme in the 
structure near the binding site, we replace the relevant 
notes at the start of each line of the compound's atoms 
in the pdb file from "HETATM" to "ATOM"; else, it will 
be ignored. Each docking software requires protein file 
details in an appropriate format (pdbqt, mol), e.g. the 
RMSD, the coordinates of the binding pocket, the 
number of poses, and the list of compounds to be 
docked. These settings have bearing on the output 
poses. Setting the RMSD between ligands to 1.0 A 
results in the retention of top-ranked poses and the 
elimination of others. However, setting this value to 0.0 
will result in the retention of all created poses. 

Molecular docking has now become an integral tool 
in drug discovery. The aim is to find a fast target 
specific mode of binding for ligand when docked into a 
target with a known 3-dimensional structure. During the 
docking process, the algorithm often generates multiple 
potential poses of the ligand which are then analysed 
using a scoring function to ascertain the best pose. The 
scoring functions help to identify the precise location 
within the target for ligand binding and the 
conformation of the ligand therein. Also, they help to 
infer the likely binding affinity for every binding mode. 
Lastly, they can also be used in ranking potential drug 
candidates during virtual screening of a compound 
library. The scoring functions mostly used fall within 
three categories: force field, empirical and knowledge 
based. The docking algorithms mostly utilise one of the 
scoring functions mentioned above.  
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The aim of this study is to develop a novel algorithm 
that combines outputs from easily available and 
potentially open sourced docking platforms, one that 
can ascertain a statistical consensus combination of a 
finite number of docking platforms, to provide 
kinase:ligand match with higher accuracy than any 
individual docker can offer.  

2.3. Normalisation 

The 10 docking platforms used in our study return 
widely varying scores, reflecting the innate choice of 
biochemical descriptors. Naturally, these scores could 
not simply be linearly regressed. To this end, we apply 
two popular normalisation protocols: a) Ranking - 
Ranks are used to position ligands based on docking 
scores returned against the target. In simple terms, this 
means that the greater the negative score, the higher is 
the rank of the ligand on the scale; the shortcoming of 
this method if a greater bias towards large negative 
numbers, b) Minimum Scale and c) Maximum scale, 
now jointly called min-max scale – Instead of dealing 
with a distribution function, these two measures simply 
choose the maximum and minimum from the pool of 
numbers. Unlike the multinomial probit and multinomial 
logit estimators, these measures make no assumptions 
concerning the distribution of the unobservable part of 
utility. The method is probabilistically accurate with the 
usual woes of ensemble averaging that does not permit 
for transient modes. 

2.4. Consensus Scoring (CS) Algorithm 

Molecular docking is a computational tool used to 
virtually screen potential drug candidates of their 
compatibility to bind with one or more specific target(s). 
The algorithm estimates fitness by evaluating various 
physiochemical interactions such as hydrogen bonding, 
hydrophobicity, hydrophilicity, amongst each 
ligand:target pair. The requirement for CS techniques 
emerged due to the unsatisfactory performance of 
individual docking programs that widely vary across 
various targets. These inaccuracies could be related to 
oversimplification of models used for protein-ligand 
binding, especially target conformational space, 
solvation, and polarization. Unsurprisingly, most often 
virtual screening campaigns rely on in vitro techniques 
that do not match experimental reality. Traditionally, 
the weakest link of a docking platform is its scoring 
function, the performance of which depends on various 
factors, namely the choice of the data training set, 
empirical assumptions, and parametrization technique 
used. This study will combine results from various 
docking programs, rank best kinase:ligand matches 
targeting potential drug repurposing.  

We combine docking scores from 10 docking 
programs for 273 kinase proteins accessed from the 
PDF databank to generate holistic scores for our 
consensus scoring algorithm, structured under 4 
different combinatorial formulas: 

!! = !!,!  !"
!!! !!,!!!"

!!!      (1a) 

!! =    !!,!!"# !!,!!!"
!!!

!"
!!!     (1b) 

!! = !!,!!"
!!! !!,! − !!

!!"
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!! =    !!,!!"
!!! !"# !!,! − !!

!!"
!!!     (1d)  

Sc represents the combined score, Si,j are the 
docking scores of ligands for the 10 programs (Qvina02, 
Qvina2.1, Autodock, Autodock-vina, Plant, Dock6, 
Smina, VinaXB, Qvina-w, and Vina-carb), i.e. i = 1, 2,... 
10, 0<xi<1 are coefficients of the docking programs 
(incremented in steps of 0.05), i defining the weight 
factors of those docking results in the combinatorics, !! 
are the averages for each docking set from program 
Equations (1a-1d) that are iterated over 273 ensembles 
using 10 docking programs. Si denotes the arithmetic 
average of all ligand-docking scores for the same 
target for each docking program employed. The ranks 
of active ligands before and after combining are 
compared to assess the improvement from the 
consensus approach over individual docking programs, 
as also to compare between the 4 formulas (1a-1b). 

3. RESULTS AND DISCUSSIONS 

We compared the result against 4 other consensus 
score lines, e.g. Mean (MEAN), Median (MED), 
Minimum (MIN) and Maximum (MAX), Results from 
traditional consensus scoring 

 

Figure 1: Consensus scores are determined as a proportion 
(to the left of the top performing individual docking score 
denoted with a vertical red line) of the whole histogram area, 
estimated for an order of 1. The average scores are given by 
the arithmetic mean over the set {Si} for each i, i.e. mean{Si}. 
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The solid red lines in the histograms in Figures 1-5 
identify the highest performing individual docking 
program (QVINA), whereas the blue patches to the left 
of this red line represent the upgraded performing 
docking scores due to application of consensus scoring 
technique. To evaluate the performance of our CS 
classification, the area under the ROC (Receiver 
Operating Characteristic) curve, abbreviated AUC, is 
computed for this plot; it scores 0.905. The orange 
sections to the right of the red lines represent "no 
shows," suggesting that the CS approach had no effect 
on the individual best (docking) scores in those places. 
Even though it may appear elementary, we would like 
to remind you that histograms are non-scaled 
representations of Probability Density Functions 
(PDFs) and hence analyse the entire distribution of 
combinatorics from these CS algorithms. In other 
words, Figure 1 shows the improvement in docking 
standards achieved by using the present CS approach 
rather than individual highest scores.  

 
Figure 2: Consensus scores are determined as a proportion 
(to the left of the top performing individual docking score 
denoted with a vertical red line) of the whole histogram area, 
estimated for an order of 1. The minimum of the set is given 
by min{Si}. 

Figure 2 demonstrates docking scores showing 
marginal improvement over the previous consensus 
process (Figure 1).  

 
Figure 3: Consensus scores are determined as a proportion 
(to the left of the top performing individual docking score 
denoted with a vertical red line) of the whole histogram area. 

In this example, the consensus approach does not 
improve the score lines shown in Figures 1 and 2 since 
it does not improve any of the best individual docking 
scores provided. Our best individual docking score is to 
the left of the entire histogram.  

 

Figure 4: Consensus scores are determined as a proportion 
(to the left of the top performing individual docking score 
denoted with a vertical red line) of the whole histogram area. 

 

Figure 5: Consensus scores are determined as a proportion 
(to the left of the top performing individual docking score 
denoted with a vertical red line) of the whole histogram area. 

We clearly see that while Figures 1 and 2 establish 
improvement over any individual docking platform, this 
is not generically true for Figure 3-5. In other words, the 
quality of consensus scoring relates inherently to the 
choice of algorithm, again justifying the remit of this 
study. 

3.2. Superiority of Consensus Scoring over 
Individual Docking 

To demonstrate the superiority of consensus 
scoring (CS) over individual docking, the individual top 
performer Qvina's results are compared with the CS 
score line. This is calculated as a fraction of the area to 
the total area lying on the left of the individual best 
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scoring (QVINA) line (we consistently choose to the 
‘left’ as binding energy is negative). The larger the 
patch area (always less than 1, as it is a ration of the 
area to the left of the QVINA-line to the total histogram 
area), the better the CS score (compared to Qvina). 
The charts below show results for linear and non-linear 
consensus scoring algorithms.  
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Figure 6: Consensus scores determined as a proportion (to 
the left of the top performing individual docking score denoted 
with a vertical red line) of the whole histogram area. 

Figure 6 uses linear superposition of scores. The 
results demonstrate that this algorithm 
!! = !!,!!"

!!!
!"
!!! !!,!  improves docking scores when 

compared with the best individual docking scorer 
QVINA. The blue patches to the left of the red vertical 
line in the histogram plot above represent this. It 
returned an AUC of 0.9721.  
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Figure 7: Consensus scores are determined as a proportion 
(to the left of the top performing individual docking score 
denoted with a vertical red line) of the whole histogram area, 
estimated for an order of 1. 

In Figure 7, the consensus technique did not result in 
an improvement in docking scores; rather, the 
performance got worse. This is shown in the location of 
the histogram that now entirely shifts to the right of the 
best docking score, which is represented by the red 
vertical line.  
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Figure 8: Consensus scores are determined as a proportion 
(to the left of the top performing individual docking score 
denoted with a vertical red line) of the whole histogram area, 
estimated for an order of 2. 

Figure 8 uses the nonlinear combination defined by 
the formula !! = !!,!!"

!!!
!"
!!! !!,!! . The results are 

seen to be inferior to the QVINA score line. However, 
this is not surprising because we increased the power 
to 2, which artificially remove the negative scores and 
hence skews the distribution.  
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Figure 9: Consensus scores are determined as a proportion 
(to the left of the top performing individual docking score 
denoted with a vertical red line) of the whole histogram area. 
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In Figure 9, the results are no better than the best 
score from individual docking. That is, the CS was 
unable to improve the individual scores provided.  
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Figure 10: Consensus scores are determined as a 
proportion (to the left of the top performing individual docking 
score denoted with a vertical red line) of the whole histogram 
area. 

Figure 10 outlines results with stronger nonlinearity 
in regression. The results clearly indicate that even 
inferior score lines to those in Figures 8 and 9. The 
corresponding AUC is 0.90157. 
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Figure 11: Consensus scores are determined as a 
proportion (to the left of the top performing individual docking 
score denoted with a vertical red line) of the whole histogram 
area. 

The consensus algorithm is modified to analyse 
distribution away from the mean score line. Figure 11 
shows that the outcome is significantly better than the 
best performing score from individual docking. 
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Figure 12: Consensus scores are determined as a 
proportion (to the left of the top performing individual docking 
score denoted with a vertical red line) of the whole histogram 
area. 

In Figure 12, we have modified the algorithm to 
allow for the subtraction of the mean of the scores from 
the scores that follow, followed by multiplication by their 
respective weights. This is to measure single-point 
dispersion of data from first correlation functions. The 
results show that the scores here are not better than 
the best score from QVINA.  
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Figure 13: Consensus scores are determined as a 
proportion (to the left of the top performing individual docking 
score denoted with a vertical red line) of the whole histogram 
area. 

Clearly, Figure 13 proves that the scores progressively 
deteriorate but are still better than the 
non-differentiated raw score line shown in Figure 8.  

Figure 15 demonstrates a key outcome establishing 
the power of the CS algorithm employed over individual 
docking platforms as also compared to previous CS 
attempts. All 4 subplots show ‘accuracy’ plotted against 
the total number ‘n’ of docking software combined, 
where ‘accuracy’ is defined as the AUC score. Figure 
15a depicts a steady improvement in accuracy with 
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increasing number of docking combinations up to ca 
n=8 beyond which the plot indicates a plateau (more 
simulations needed to confirm this). Figures 15b and 
15d show similar trend as in Figure 15a but with a 
faster saturation at ca n=5, where saturation implies 
the start of the plateau beyond which addition in the 
number of randomly chosen docking platforms do not 
substantially improve the score lines anymore. Figure 
15c returned a no show in that this did not prove or 
disprove anything regarding the worth of CS over 
individual docking. 

 

Figure 16: Comparison between performance and the 
number of docking programs. The charts show the area ratio 
against the number of docking programs. 

The graphic above compares the performance of 
two different consensus methods. The charts above 
illustrate that despite utilizing a different consensus 
technique, we see improvements for each docking 
platform added. In a way, Figure 16 reconfirms the 
conclusions of Figures 15(a), 15(b) and 15(d). 

4. CONCLUSIONS 

Several molecular docking and computational (e.g. 
Molecular Dynamic (MD) simulation) approaches have 
been adopted over the years in order to lower the cost 
and time required to identify new drugs. Of late, 
particularly with roaring success in the development of 
Covid vaccines [51, 52], CS algorithms have turned up 
being the most promising computationally effective 
non-invasive drug delivering candidates. This does not 
eliminate the use of wet lab techniques, but it does 
lower the number of possible candidates who will be 
examined with them. Despite largescale adaptation of 
this approach both by academic and large 
pharmaceutical corporations, key difficulties exist in 
determining algorithms to ensure that the results of 
computational aided drug development are credible 
and can be withstand in vivo testing both in 
experimental laboratories and MD simulation.  
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Figure 15: Plots (a-d) depict the performance of the CS algorithm as the number of docking platforms increases for the 4 
separate combinatorics employed in this study. 
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The proposed CS algorithms have been evaluated 
and proved to be successful against certain targets; 
nevertheless, the problem is reproducing the same 
performance against an unknown target. The results 
reveal that when employed against an unknown target, 
this algorithm frequently fails, and the more chemically 
and structurally dissimilar they are to the target used in 
their development, i.e. decoys, the more likely they are 
to deliver false positive and false negative outcomes. 
The difficulty of not knowing which algorithm works well 
for a target of interest, and the process gets repetitive if 
we go on a test for the best algorithm to utilise each 
time a drug discovery campaign is required. 

As discussed, since a successful docking platform 
over a range of data sets are often seen ineffective with 
different data sets, molecular docking technology 
needs to grow beyond known subjective targeting to a 
holistic conformal setting. This necessitated the 
development of a novel consensus method, such as 
the one we are proposing. This concept, known as the 
Consensus Scoring (CS) approach is a possible way 
forward. 

The novel technique we propose has an inbuilt 
preference towards down-weighing scores from weak 
predictors under specific conditions to compute a 
consensus. We used a few functions in this study, and 
their performance are compared to the top performing 
docking technique, that for our dataset, turns out to be 
QVINA. The performance is quantified using AUC 
scores that give us an indication of how far our model 
can outperform the top performing (individual) 
algorithm, and the other metric is used to specify how 
many docking algorithms are necessary for a 
successful docking campaign. Notably, the maximum 
attainable AUC is 1. The closer the AUC returns to one, 
the better the algorithm under evaluation. 

The consensus method discussed here could also 
be repurposed towards vaccine delivery and essentially 
in designing more target specific affinity sensors of the 
type recently developed [57] where microscopic level 
nucleic acid hybridization method have been adopted 
for antigen-antibody detection successfully in Covid-19 
detection.  

Four separate algorithms have been utilised. Using 
multiple statistics, our CS algorithm encapsulates a set 
of 12 combinatorial formulas, including linear and 
nonlinear regressions. Our results non-equivocally 
show that the best combinations are surprisingly with 
linear regression, particularly when the distribution is 
assayed away from the mean score line. We have 
demonstrated significant improvement on three 
instances, with AUC scores of 0.98721, 0.90157, and 
0.7761, as shown in Figures 6, 10, and 11. The other 

combinations clearly did not outperform the QVINA 
score line for this specific dataset.  

A key outcome of this analysis is the affirmative 
conclusion that only a small finite number of docking 
combinations are needed in CS algorithm to 
outperform the best individual docker. This is a critical 
finding as while previous studies pointed to the worth of 
CS over individual docking in terms of better accuracy, 
what remained a question was how many such 
combinations would be needed to attain an acceptable 
improvement in performance as otherwise it becomes 
computationally non-productive. Figures 5a, 5b, and 5d 
prove beyond doubt anywhere between 5-9 docking 
combinations will suffice largely independent of the CS 
algorithm chosen (not completely independent though).  

5. FUTURE WORK 

We are presently working both on adding to the 
algorithmic database as also sampling other drug 
candidates for MRSA within the existing CS structure. 
Another complementary approach that we are also 
progressing with is to compare the AUC score line 
predictions against those from Machine Learning.  
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