Multicenter Study of Pyruvate Kinase Deficiency in Argentina

Authors

  • C. Pepe Servicio de Hematología-Oncología, Hospital de Pediatría, S.A.M.I.C “Prof. Dr. Juan P. Garrahan” Buenos Aires, Argentina
  • S. Eandi Eberle Servicio de Hematología-Oncología, Hospital de Pediatría, S.A.M.I.C “Prof. Dr. Juan P. Garrahan” Buenos Aires, Argentina
  • H. Donato Consultorios de Hematología Infantil, Ciudad de Buenos Aires, Argentina
  • N. Basack Unidad de Hematología, Hospital de Niños "Ricardo Gutiérrez", Ciudad Autónoma de Buenos Aires, Argentina
  • M.F. Tisi Baña Servicio de Hematología-Oncología, Hospital Italiano de Buenos Aires
  • M.A. Cedola Clínica San Lucas Neuquen, Argentina
  • E. García Servicio de Oncohematología Pediátrica, Departamento de Pediatría, Hospital Nacional Alejandro Posadas, Buenos Aires, Argentina
  • M.C. Rapetti Sección Hematología/Oncología, Hospital Municipal del Niño de San Justo, San Justo, Buenos Aires, Argentina
  • E. Rubulotta Sanatorio de Niños, Rosario, Argenina
  • B. Milanesio Servicio de Hematología-Oncología, Hospital de Pediatría, S.A.M.I.C “Prof. Dr. Juan P. Garrahan” Buenos Aires, Argentina
  • A. Maquijo Bisio Unidad de Hemato Oncología Pediatrica - Htal De Guillermo Rawson - San Juan, Argentina
  • M.A. Cichierichetti Hospital Vilela, Rosario, Santa fe, Argentina
  • A. Lazarowski Institute for Research in Physiopathologyand Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
  • V. Avalos Gomez Servicio de Hematología-Oncología, Hospital de Pediatría, S.A.M.I.C “Prof. Dr. Juan P. Garrahan” Buenos Aires, Argentina

DOI:

https://doi.org/10.12974/2312-5411.2022.09.02

Keywords:

Pyruvate Kinase Deficiency, Anemia, RBC transfusion, Iron overload

Abstract

The red blood cell (RBC) pyruvate kinase deficiency (PKD) is the most common recessive congenital defect of glycolytic enzymes associated with non-spherocytic hemolytic anemia. It is a rare hereditary disorder caused by >300 variants in the PKLR gene. This is a retrospective study of 19 patients from different centers from Argentina with confirmed molecular diagnosis of PKD. Clinical follow-up was carried out from birth in most cases. Five consanguineous patients from “gypsy” community, were homozygous for the “PK-Gypsy deletion” (PK-Gd). During the neonatal period they developed anemia with icterus. Transfusion exchange was required in 60%, light therapy in 80%, and RBC transfusion in 80%. During the follow-up iron overload was detected in the 100%, cholecystectomy was indicated in 40%, and splenectomy in 60%. Thirteen cases had 2 missense variants (MS), being the Mediterranean variant (p.Arg486Trp) the more frequent detected (26%).Only 1 patient had a missense-splicing mutation combination. During the neonatal period, 86% had anemia and icterus. Light therapy was required in 78%, transfusion exchange in 21% and RBC transfusion in 64%. During the follow-up iron overload was detected in 57% and splenectomy was indicated in 43%. Transfusions (pre-splenectomy and post-splenectomy) were more required in PK-Gd cases as compared with patients with point mutations (100%/60% vs 71%/29% respectively). Our data indicates a high clinical-therapeutic-molecular heterogeneity in PKD patients with the PK-Gd group presenting the most severe cases.

References

Grace RF, Bianchi P, van Beers EJ, et al. Clinical spectrum of pyruvate kinase deficiency: Data from the Pyruvate Kinase Deficiency Natural History Study. Blood 2018; 131(20): 2183- 2192 https://doi.org/10.1182/blood-2017-10-810796

Secrest MH, Storm M, Carrington C, Casso D, Gilroy K, Pladson L, Boscoe AN. Prevalence of pyruvate kinase deficiency: A systematic literature review. Eur J Haematol 2020; 105(2): 173-184. Epub 2020 Jun 23. PMID: 32279356; PMCID: PMC7496626. https://doi.org/10.1111/ejh.13424

Beutler E., Gelbart T. Estimating the prevalence of pyruvate kinase deficiency from the gene frequency in the general white population, Blood 2000; 95(11): 3585-3588. https://doi.org/10.1182/blood.V95.11.3585

Bianchi P, Fermo E, Lezon-Geyda K, et al. Genotypephenotype correlation and molecular heterogeneity in pyruvate kinase deficiency. Am J Hematol 2020; 95(5): 472- 482. https://doi.org/10.1002/ajh.25753

Aisaki K, Aizawa S, Fujii H, Kanno J, Kanno H. Glycolytic inhibition by mutation of pyruvate kinase gene increases oxidative stress and causes apoptosis of a pyruvate kinase deficient cell line. Exp Hematol 2007; 35(8): 1190-200. https://doi.org/10.1016/j.exphem.2007.05.005

Zaninoni A, Russo R, Marra R, Fermo E, Andolfo I, Marcello AP, Consonni D, Rosato BE, MartoneS, Fattizzo B, Barcellini W, Iolascon A, Bianchi P. Evaluation of the Main Regulators of Systemic Iron Homeostasis in Pyruvate Kinase Deficiency. Blood 202; 138: 1993-1994 (63rd ASH Annual Meeting Abstracts). https://www.sciencedirect.com/science/article/pii/S00064971 21039549 https://doi.org/10.1182/blood-2021-151635

Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, Firmin DN, Wonke B, Porter J, Walker JM, Pennell DJ. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001; 22(23): 2171-9. https://doi.org/10.1053/euhj.2001.2822

Milanesio B, Pepe C, Defelipe LA, EandiEberle S, Avalos Gomez V, Chaves A, Albero A, Aguirre F, Fernandez D, Aizpurua L, Paula Dieuzeide M, Turjanski A, Bianchi P, Fermo E, Feliu-Torres A. Six novel variants in the PKLR gene associated with pyruvate kinase deficiency in Argentinian patients. Cli Biochem 2021; 91: 26-30. https://doi.org/10.1016/j.clinbiochem.2021.02.003

Baronciani L, Beutler E. Molecular study of pyruvate kinase deficient patients with hereditary nonspherocytic hemolytic anemia. J Clin Invest 1995; 95(4): 1702-1709. https://doi.org/10.1172/JCI117846

Wood JC. Magnetic resonance imaging measurement of iron overload. Curr Opin Hematol 2007; 14(3): 183-190. https://doi.org/10.1097/MOH.0b013e3280d2b76b

Dhamija M, Mahajan A, Kalra M, Virmani A. Deferasirox in Indian children with thalassemia major: 3 years' experience. Indian J Med Paediatr Oncol 2013; 34(1): 16-20. PMID: 23878481; PMCID: PMC3715972. https://doi.org/10.4103/0971-5851.113407

Chou R, DeLoughery TG. Recurrent thromboembolic disease following splenectomy for pyruvate kinase deficiency. Am J Hematol 2001; 67(3): 197-9. https://doi.org/10.1002/ajh.1107

Zanella A, Fermo E, Bianchi P, Chiarelli LR, Valentini G. Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev. 2007; 21(4): 217-31. Epub 2007 Mar 13. PMID: 17360088. https://doi.org/10.1016/j.blre.2007.01.001

Downloads

Published

2022-06-03

How to Cite

Pepe, C., Eberle, S. E., Donato, H., Basack, N., Baña, M. T., Cedola, M., García, E., Rapetti, M., Rubulotta, E., Milanesio, B., Bisio, A. M., Cichierichetti, M., Lazarowski, A., & Gomez, V. A. (2022). Multicenter Study of Pyruvate Kinase Deficiency in Argentina. Journal of Hematology Research, 9, 4–9. https://doi.org/10.12974/2312-5411.2022.09.02

Issue

Section

Articles