Antigen Presentation and T Cell Response in Umbilical Cord Blood and Adult Peripheral Blood 

Authors

  • Eniko Grozdics First Department of Pediatrics, Semmelweis University and Research Group of Pediatrics and Nephrology, Hungarian Academy of Sciences, Budapest, Bókay u. 53, H-1083, Hungary
  • Gergely Toldi First Department of Pediatrics, Semmelweis University and Research Group of Pediatrics and Nephrology, Hungarian Academy of Sciences, Budapest, Bókay u. 53, H-1083, Hungary

DOI:

https://doi.org/10.12974/2312-5411.2014.01.01.3

Keywords:

APC, cord blood, neonate, T cell, Th17, Treg.

Abstract

The efficiency of the immune response is well-known to be decreased in the perinatal period compared to adulthood. Several factors may play a role in this finding, including immaturity of adaptive immune responses, as well as alterations in the prevalence and functionality in elements of humoral and cellular immune reactions compared to adult-type immunity. The process of antigen presentation and adequate T cell function are cornerstone features in coordinating the immune response already at this early age. Over the recent decades, several studies have revealed remarkable details that contribute to these alterations. However, many aspects of the exact mechanisms are still not fully understood.

In this review, we aim to summarize current knowledge of studies of altered cell prevalence and functionality that contribute to differences of antigen presentation and the T cell immune response between the perinatal and adult periods. Decreased level of antigen presentation, lower expression of costimulatory molecules, lower Th1 and Th17 response, and deficient function of regulatory elements are the most important differences in CB compared with adult peripheral blood. These differences are of practical importance from two distinct aspects. First, the decreased efficiency of the immune response plays an important role in the development of several diseases affecting preterm and term neonates, as well as in a higher incidence of infections compared to adults. Second, umbilical cord blood (UCB)-derived hematopoietic stem cells are widely used in the treatment of different hematological and immunological disorders. The prevalence of graft-versus-host disease (GVHD) is lower upon UCB-derived stem cell transplantation compared to adult peripheral blood or bone marrow-derived stem cells. Therefore, the deeper understanding of the mechanisms contributing to a decreased T cell response is of importance in improving therapeutic efficiency in related disorders. 

References

Pérez A, Bellón JM, Gurbindo MD, Muñoz-Fernández MA. Impairment of stimulation ability of very-preterm neonatal monocytes in response to lipopolysaccharide. Hum Immunol 2010; 71(2): 151-7. http://dx.doi.org/10.1016/j.humimm.2009.11.011

Velilla PA, Rugeles MT, Chougnet CA. Defective antigenpresenting cell function in human neonates. Clin Immunol 2006; 121: 251-9. http://dx.doi.org/10.1016/j.clim.2006.08.010

Han P, McDonald T, Hodge G. Potential immaturity of the Tcell and antigen-presenting cell interaction in cord blood with particular emphasis on the CD40-CD40 ligand costimulatory pathway. Immunology 2004; 113(1): 26-34. http://dx.doi.org/10.1111/j.1365-2567.2004.01933.x

Sorg RV, Kogler G, Wernet P. Identification of cord blood dendritic cells as an immature CD11c-population. Blood 1999; 93: 2302-7.

Borras FE, Matthews NC, Lowdell MW, Navarrete CV. Identification of both myeloid CD11c+ and lymphoid CD11cdendritic cell subsets in cord blood. Br J Haematol 2001; 113: 925-31. http://dx.doi.org/10.1046/j.1365-2141.2001.02840.x

De Wit D, Olislagers V, Goriely S, Vermeulen F, Wagner H, Goldman M, et al. Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. Blood 2004; 103: 1030-2. http://dx.doi.org/10.1182/blood-2003-04-1216

De Wit D, Tonon S, Olislagers V, Goriely S, Boutriaux M, Goldman M, et al. Impaired responses to toll-like receptor 4 and toll-like receptor 3 ligands in human cord blood. J Autoimmun 2003; 21: 277-81. http://dx.doi.org/10.1016/j.jaut.2003.08.003

Darmochwal-Kolarz D, Serafin A, Tabarkiewicz J, Kolarz B, Rolinski J, Oleszczuk J. The expressions of co-stimulatory molecules are altered on putative antigen-presenting cells in cord blood. Am J Reprod Immunol 2013; 69: 180-7. http://dx.doi.org/10.1111/aji.12031

Mahnke K, Enk AH. Dendritic cells: key cells for the induction of regulatory T cells? Curr Top Microbiol Immunol 2005; 293: 133-50. http://dx.doi.org/10.1007/3-540-27702-1_7

Hodge S, Hodge G, Flower R, Han P. Cord blood leucocyte expression of functionally significant molecules involved in the regulation of cellular immunity. Scand J Immunol 2001; 53: 72-8. http://dx.doi.org/10.1046/j.1365-3083.2001.00845.x

Upham JW, Lee PT, Holt BJ, Heaton T, Prescott SL, Sharp MJ, et al. Development of interleukin-12-producing capacity throughout childhood. Infect Immun 2002; 70: 6583-8. http://dx.doi.org/10.1128/IAI.70.12.6583-6588.2002

Crespo I, Paiva A, Couceiro A, Pimentel P, Orfao A, Regateiro F. Immunophenotypic and functional characterization of cord blood dendritic cells. Stem Cells Dev 2004; 13: 63-70. http://dx.doi.org/10.1089/154732804773099263

Drohan L, Harding JJ, Holm B, Cordoba-Tongson E, Dekker CL, Holmes T, et al. Selective developmental defects of cord blood antigen-presenting cell subsets. Hum Immunol 2004; 65: 1356-69. http://dx.doi.org/10.1016/j.humimm.2004.09.011

Kraft JD, Horzempa J, Davis C, Jung JY, Peña MM, Robinson CM. Neonatal macrophages express elevated levels of interleukin-27 that oppose immune responses. Immunology. 2013; 139(4): 484-93. http://dx.doi.org/10.1111/imm.12095

Levy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR. Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J Immunol 2004; 173: 4627-34.

Forster-Waldl E, Sadeghi K, Tamandl D, Gerhold B, Hallwirth U, Rohrmeister K, et al. Monocyte toll-like receptor 4 expression and LPS-induced cytokine production increase during gestational aging. Pediatr Res 2005; 58: 121-4. http://dx.doi.org/10.1203/01.PDR.0000163397.53466.0F

Yan SR, Qing G, Byers DM, Stadnyk AW, Al-Hertani W, Bortolussi R. Role of MyD88 in diminished tumor necrosis factor alpha production by newborn mononuclear cells in response to lipopolysaccharide. Infect Immun 2004; 72: 1223-9. http://dx.doi.org/10.1128/IAI.72.3.1223-1229.2004

Gold MC, Robinson TL, Cook MS, Byrd LK, Ehlinger HD, Lewinsohn DM, et al. Human neonatal dendritic cells are competent in MHC class I antigen processing and presentation. PLoS One 2007; 2(9): e957. http://dx.doi.org/10.1371/journal.pone.0000957

Strunk T, Temming P, Gembruch U, Reiss I, Bucsky P, Schultz C. Differential maturation of the innate immune response in human fetuses. Pediatr Res 2004; 56: 219-26. http://dx.doi.org/10.1203/01.PDR.0000132664.66975.79

Serra P, Amrani A, Yamanouchi J, Han B, Thiessen S, Utsugi T, et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 2003; 19: 877-89. http://dx.doi.org/10.1016/S1074-7613(03)00327-3

Vendetti S, Chai JG, Dyson J, Simpson E, Lombardi G, Lechler R. Anergic T cells inhibit the antigen-presenting function of dendritic cells. J Immunol 2000; 165: 1175-81.

Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J Clin Invest 2004; 114: 1209-17.

Langrish CL, Buddle JC, Thrasher AJ, Goldblatt D. Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin Exp Immunol 2002; 128(1): 118-23. http://dx.doi.org/10.1046/j.1365-2249.2002.01817.x

Elliott SR, Roberton DM, Zola H, Macardle PJ. Expression of the costimulator molecules, CD40 and CD154, on lymphocytes from neonates and young children. Hum Immunol 2000; 61(4): 378-88. http://dx.doi.org/10.1016/S0198-8859(99)00189-5

García Vela JA, Delgado I, Bornstein R, Alvarez B, Auray MC, Martin I, et al. Comparative intracellular cytokine production by in vitro stimulated T lymphocytes from human umbilical cord blood (HUCB) and adult peripheral blood (APB). Anal Cell Pathol 2000; 20(2-3): 93-8.

Kollár S, Sándor N, Molvarec A, Stenczer B, Rigó J Jr, Tulassay T, et al. Prevalence of intracellular galectin-1- expressing lymphocytes in umbilical cord blood in comparison with adult peripheral blood. Biol Blood Marrow Transplant 2012; 18(10): 1608-13. http://dx.doi.org/10.1016/j.bbmt.2012.05.008

Gasparoni A, Ciardelli L, Avanzini A, Castellazzi AM, Carini R, Rondini G, et al. Age-related changes in intracellular TH1/TH2 cytokine production, immunoproliferative T lymphocyte response and natural killer cell activity in newborns, children and adults. Biol Neonate 2003; 84(4): 297-303. http://dx.doi.org/10.1159/000073638

Adkins B. T-cell function in newborn mice and humans. Immunol Today 1999; 220: 330-5. http://dx.doi.org/10.1016/S0167-5699(99)01473-5

Adkins B, Biu Y, Guevara P. The generation of Th memory in neonates versus adults: prolonged primary Th2 effector function and impaired development of Th1 memory effector function in murine neonates. J Immunol 2001; 166: 918-25.

Adkins B, Du RQ. Newborn mice develop balanced Th1/Th2 primary effector responses in vivo but are biased to Th2 secondary responses. J Immunol 1998; 160: 4217-24.

Adkins B, Biu Y, Cepero E, Perez R. Exclusive Th2 primary effector function in spleens but mixed Th1/Th2 function in lymph nodes of murine neonates. J Immunol 2000; 164: 2347-53.

Nitsche A, Zhang M, Clauss T, Siegert W, Brune K, Pahl A. Cytokine profiles of cord and adult blood leukocytes: differences in expression are due to differences in expression and activation of transcription factors. BMC Immunol 2007; 8: 18. http://dx.doi.org/10.1186/1471-2172-8-18

Kilpinen S, Henttinen T, Lahdenpohja N, Hulkkonen J, Hurme M. Signals leading to the activation of NF-kappa B transcription factor are stronger in neonatal than adult T lymphocytes. Scand J Immunol 1996; 44(1): 85-8. http://dx.doi.org/10.1046/j.1365-3083.1996.d01-277.x

Min B, Legge KL, Pack C, Zaghouani H. Neonatal exposure to a selfpeptide-immunoglobulin chimera circumvents the use of adjuvant and confers resistance to autoimmune disease by a novel mechanism involving interleukin 4 lymph node deviation and interferon gamma mediated splenic anergy. J Exp Med 1998; 188: 2007-17. http://dx.doi.org/10.1084/jem.188.11.2007

Arulanandam BP, Van Cleave VH, Metzger DW. IL-12 is a potent neonatal vaccine adjuvant. Eur J Immunol 1999; 29: 256-64. http://dx.doi.org/10.1002/(SICI)1521- 4141(199901)29:01<256::AID-IMMU256>3.0.CO;2-G

Schultz C, Strunk T, Temming P, Matzke N, Härtel C. Reduced IL-10 production and -receptor expression in neonatal T lymphocytes. Acta Paediatr 2007; 96(8): 1122-5. http://dx.doi.org/10.1111/j.1651-2227.2007.00375.x

White GP, Watt PM, Holt BJ, Holt PG. Differential patterns of methylation of the IFN-gamma promoter at CpG and non- CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells. J Immunol 2002; 168(6): 2820-7.

Luciano AA, Yu H, Jackson LW, Wolfe LA, Bernstein HB. Preterm labor and chorioamnionitis are associated with neonatal T cell activation. PLoS ONE 2011; 6: e16698. http://dx.doi.org/10.1371/journal.pone.0016698

Crespo M, Martinez DG, Cerissi A, Rivera-Reyes B, Bernstein HB, Lederman MM, et al. Neonatal T-cell maturation and homing receptor responses to Toll-like receptor ligands differ from those of adult naive T cells: relationship to prematurity. Pediatr Res 2012; 71(2): 136-43. http://dx.doi.org/10.1038/pr.2011.26

Grindebacke H, Stenstad H, Quiding-Järbrink M, et al. Dynamic development of homing receptor expression and memory cell differentiation of infant CD4+CD25high regulatory T cells. J Immunol 2009; 183: 4360-70. http://dx.doi.org/10.4049/jimmunol.0901091

Elliott SR, Macardle PJ, Roberton DM, Zola H. Expression of the costimulator molecules, CD80, CD86, CD28, and CD152 on lymphocytes from neonates and young children. Hum Immunol 1999; 60(11): 1039-48. http://dx.doi.org/10.1016/S0198-8859(99)00090-7

Schelonka RL, Raaphorst FM, Infante D, Kraig E, Teale JM, Infante AJ. T cell receptor repertoire diversity and clonal expansion in human neonates. Pediatr Res 1998; 43(3): 396- 402. http://dx.doi.org/10.1203/00006450-199803000-00015

Chen L, Cohen AC, Lewis DB. Impaired allogeneic activation and T-helper 1 differentiation of human cord blood naive CD4 T cells. Biol Blood Marrow Transplant 2006; 12(2): 160-71. http://dx.doi.org/10.1016/j.bbmt.2005.10.027

Schaub B, Liu J, Schleich I, Höppler S, Sattler C, von Mutius E. Impairment of T helper and T regulatory cell responses at birth. Allergy 2008; 63(11): 1438-47. http://dx.doi.org/10.1111/j.1398-9995.2008.01685.x

Takahata Y, Nomura A, Takada H, Ohga S, Furuno K, Hikino S, et al. CD25+ CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol 2004; 32: 622-9. http://dx.doi.org/10.1016/j.exphem.2004.03.012

Wing K, Lindgren S, Kollberg G, Lundgren A, Harris RA, Rudin A, et al. CD4 T cell activation by myelin oligodendrocyte glycoprotein is suppressed by adult but not cord blood CD25+ T cells. Eur J Immunol 2003; 33: 579-87. http://dx.doi.org/10.1002/eji.200323701

Witowski J, Ksiazek K, Jorres A. Interleukin-17: a mediator of inflammatory responses. Cell Mol Life Sci 2004; 61: 567-79. http://dx.doi.org/10.1007/s00018-003-3228-z

Chang CC, Satwani P, Oberfield N, Vlad G, Simpson LL, Cairo MS. Increased induction of allogeneic-specific cord blood CD4+CD25+ regulatory T (Treg) cells: a comparative study of naïve and antigenic-specific cord blood Treg cells. Exp Hematol 2005; 33(12): 1508-20. http://dx.doi.org/10.1016/j.exphem.2005.09.002

Black A, Bhaumik S, Kirkman RL, Weaver CT, Randolph DA. Developmental regulation of Th17-cell capacity in human neonates. Eur J Immunol 2012; 42(2): 311-9. http://dx.doi.org/10.1002/eji.201141847

Cosmi L, De Palma R, Santarlasci V, Maggi L, Capone M, Frosali F, et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T-cell precursor. J Exp Med 2008; 205: 1903-16. http://dx.doi.org/10.1084/jem.20080397

Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J Immunol 2011; 187(4): 1778-87. http://dx.doi.org/10.4049/jimmunol.1003919

Palin AC, Ramachandran V, Acharya S, Lewis DB. Human neonatal naive CD4+ T cells have enhanced activationdependent signaling regulated by the microRNA miR-181a. J Immunol 2013; 190(6): 2682-91. http://dx.doi.org/10.4049/jimmunol.1202534

Li QJ, Chau J, Ebert PJR, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147-61. http://dx.doi.org/10.1016/j.cell.2007.03.008

Toldi G, Treszl A, Pongor V, Gyarmati B, Tulassay T, Vásárhelyi B. T-lymphocyte calcium influx characteristics and their modulation by Kv1.3 and IKCa1 channel inhibitors in the neonate. Int Immunol 2010; 22(9): 769-74. http://dx.doi.org/10.1093/intimm/dxq063

Rabinovich GA, Baum LG, Tinari N, et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol 2002; 23: 313-20. http://dx.doi.org/10.1016/S1471-4906(02)02232-9

Endharti AT, Zhou YW, Nakashima I, Suzuki H. Galectin-1 supports survival of naive T cells without promoting cell proliferation. Eur J Immunol 2005; 35: 86-97. http://dx.doi.org/10.1002/eji.200425340

Stillman BN, Hsu DK, Pang M, et al. Galectin-3 and galectin- 1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 2006; 176: 778-789.

Rabinovich GA, Ariel A, Hershkoviz R, Hirabayashi J, Kasai KI, Lider O. Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 1999; 97: 100-6. http://dx.doi.org/10.1046/j.1365-2567.1999.00746.x

van der Leij J, van den Berg A, Blokzijl T, et al. Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. J Pathol 2004; 204: 511-8. http://dx.doi.org/10.1002/path.1671

Garín MI, Chu CC, Golshayan D, Cernuda-Morollón E, Wait R, Lechler RI. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 2007; 109: 2058-65. http://dx.doi.org/10.1182/blood-2006-04-016451

Downloads

Published

2014-02-05

How to Cite

Grozdics, E., & Toldi, G. (2014). Antigen Presentation and T Cell Response in Umbilical Cord Blood and Adult Peripheral Blood . Journal of Hematology Research, 1(1), 16–26. https://doi.org/10.12974/2312-5411.2014.01.01.3

Issue

Section

Articles