Spinel NiAl2O4 Based Catalysts: Past, Present and Future

Authors

  • Xinmiao Yu School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China
  • Shifa Wang School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China
  • Huajing Gao School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China

DOI:

https://doi.org/10.12974/2311-8741.2023.11.02

Keywords:

Nickel aluminate, Catalytic oxidation, Photocatalysis, Catalytic mechanism, Photocatalysts

Abstract

Nickel aluminate (NiAl2O4) is a kind of partially antispinel structure oxide. Because of its excellent electronic structure and energy level structure, high thermal stability and high charge transfer and separation efficiency, it has a potential application prospect in catalytic oxidation, photocatalysis, adsorption and other fields. In this paper, the synthesis methods of different NiAl2O4-based catalysts, their applications in catalytic field and related catalytic mechanisms are reviewed from the appearance of single component NiAl2O4, ion-doped NiAl2O4 and multiheterojunction NiAl2O4 catalysts. The application of NiAl2O4 photocatalysts in the field of photocatalysis has gradually shifted from the degradation of dyes to the degradation of drugs, so its photocatalytic mechanism and degradation path need to be further studied. This review points out the direction for the future research of NiAl2O4 based catalysts in the field of catalysis.

References

Cheng, T.; Gao, H.; Liu, G.; Pu, Z.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 633, 127918. https://doi.org/10.1016/j.colsurfa.2021.127918

Wang, S.; Tang, S.; Gao, H.; Yu, C.; Yang, H.; Yu, X.; Chen, X.; Fang, L.; Li, D. Removal of congo red from wastewater using ZnO/MgO nanocomposites as adsorbents: Equilibrium isotherm analyses, kinetics and thermodynamic studies. Journal of Nano Research 2023, 77, 65–86 https://doi.org/10.4028/p-aijz91

Li, L.; Gao, H.; Liu, G.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Synthesis of carnation flower-like Bi2O2CO3 photocatalyst and its promising application for photoreduction of Cr(VI). Advanced Powder Technology 2022, 33, 103481. https://doi.org/10.1016/j.apt.2022.103481

Li, L.; Gao, H.; Yi, Z.; Wang, S.; Wu, X.; Li, R.; Yang, H. Comparative investigation on synthesis, morphological tailoring and photocatalytic activities of Bi2O2CO3 nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 644, 128758. https://doi.org/10.1016/j.colsurfa.2022.128758

Wang, S.; Yu, X.; Gao, H.; Chen, X. Hexagonal ferrite MFe12O19 (M=Sr, Ba, Cu, Ni, Pb) based photocatalysts: Photoluminescence, photocatalysis and applications. Journal of Environmental Science and Engineering Technology 2022, 10, 52-69. https://doi.org/10.12974/2311-8741.2022.10.06

Li, L.; Sun, X.; Xian, T.; Gao, H.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Template-free synthesis of Bi2O2CO3 hierarchical nanotubes self-assembled from ordered nanoplates for promising photocatalytic application. Physical Chemistry Chemical Physics 2022 24 8279–8295. https://doi.org/10.1039/D1CP05952A

Yu, C.; Wang, S.; Zhang, K.; Li, M.; Gao, H.; Zhang, J.; Yang, H.; Hu, L.; Jagadeesha, A.V.; Li, D. Visible-light-enhanced photocatalytic activity of BaTiO3/γ-Al2O3 composite photocatalysts for photodegradation of tetracycline hydrochloride. Optical Materials 2023, 135, 113364. https://doi.org/10.1016/j.optmat.2022.113364

Chen, C.; Wang, Y.; Yi, Z.; Wang, S.; Ma, J.; Gao, H.; Wu, X.; Liu, G.; Yang, H. PH-induced structural evolution, photodegradation mechanism and application of bismuth molybdate photocatalyst. Advanced Powder Technology 2022, 33, 103858. https://doi.org/10.1016/j.apt.2022.103858

Chen, X.; Liu, H.; Li, M.; Wang, S. Hexagonal lead ferrite magnetic separation catalysts: Synthesis, optical characterization, ultrasonic catalytic activity and performance prediction. Journal of Modern Polymer Chemistry and Materials 2022, 1, 11. https://doi.org/10.53964/jmpcm.2022011

Chen, C.; Ma, J.; Wang, Y.; Yi, Z.; Wang, S.; Gao, H.; Wu, X.; Liu, G.; Yang, H. CTAB-assisted synthesis of Bi2MoO6 hierarchical microsphere and its application as a novel efficient and recyclable adsorbent in removing organic pollutants. Colloids Surfaces A: Physicochemical and Engineering Aspects 2023, 656, 130441. https://doi.org/10.1016/j.colsurfa.2022.130441

Wang, S.; Yu, C.; Chen, X.; Zhang, K.; Gao, H.; Yu, X.; Zhao, X.; Fang, L.; Chen, X.; Zhang, J. Synthesis and characterization of BaTiO3/TiO2 heterojunction photocatalyst for novel application in photocatalytic degradation of TBBPA under simulated sunlight irradiation. ChemistrySelect 2022, 7, e202202764. https://doi.org/10.1002/slct.202202764

Chen, X.; Wang, S.; Gao, H.; Yang, H.; Fang, L.; Chen, X.; Tang, S.; Yu, C.; Li, D. A novel lead hexagonal ferrite (PbFe12O19) magnetic separation catalyst with excellent ultrasonic catalytic activity. Journal of Sol-Gel Science and Technology 2022, 1-16. https://doi.org/10.1007/s10971-022-05937-3

Gao, H.; Wang, Y.; Wang, S.; Yang, H.; Yi, Z. A simple fabrication, microstructure, optical, photoluminescence and supercapacitive performances of MgMoO4/MgWO4 heterojunction micro/nanocomposites. Solid State Sciences 2022, 129. https://doi.org/10.1016/j.solidstatesciences.2022.106909

He, Z.; Yang, H.; Wong,N.H.; Ernawati, L.; Sunarso, J.; Huang, Z.; Xia, Y.; Wang, Y.; Su, J.; Fu, X.; Wu, M. Construction of Cu7S4@CuCo2O4 yolk-shell microspheres composite and elucidation of its enhanced photocatalytic activity, mechanism, and pathway for carbamazepine degradation. Small. https://doi.org/10.1002/smll.202207370

He, Z.; Hasan, Fareed.; Yang, H.; Xia, Y.; Su, J.; Wang, L.; Kang, L.; Wu, M.; Huang, Z. Mechanistic insight into the charge carrier separation and molecular oxygen activation of manganese doping BiOBr hollow microspheres. Journal of Colloid and Interface Science 2023, 629, 355-367. https://doi.org/10.1016/j.jcis.2022.08.164

Wang, S.; Review on the synthesis and the application of neutron powder diffraction in M-type ferrites. Acta Scientific Applied Physics, 2022, 2 , 09-17.

https://www.researchgate.net/publication/366271772_Review_on_the_Synthesis_and_the_Application_of_Neutron_Powder_Diffraction_in_M-type_Ferrites

Gao, H.; Wang, S.; Wang, Y.; Yang, H.; Fang, L.; Chen, X.; Yi, Z.; Li, D. Fabrication and characterization of BaMoO4-coupled CaWO4 heterojunction micro/nanocomposites with enhanced photocatalytic activity towards MB and CIP degradation. Journal of Electronic Materials 2022, 51, 5230-5245. https://doi.org/10.1007/s11664-022-09769-3

He, Z.; Yang, H.; Sunarso, J.; Wong, N.H.; Huang, Z.; Xia, Y.; Wang, Y.; Su, J.; Wang, L.; Kang, L. Novel scheme towards interfacial charge transfer between ZnIn2S4 and BiOBr for efficient photocatalytic removal of organics and chromium (VI) from water. Chemosphere 2022, 303, 134973. https://doi.org/10.1016/j.chemosphere.2022.134973

Wang, S.; Gao, H.; Jin, Y.; Chen, X.; Wang, F.; Yang, H.; Fang, L.; Chen, X.; Tang, S.; Li, D. Defect engineering in novel broad-band gap hexaaluminate MAl12O19 (M= Ca, Sr, Ba)-based photocatalysts boosts near ultraviolet and visible light-driven photocatalytic performance. Materials Today Chemistry 2022, 24, 100942. https://doi.org/10.1016/j.mtchem.2022.100942

He, Z.; Siddique, M.S.; Yang, H.; Xia, Y.; Su, J.; Tang. B.; Wang, L.; Kang, L.; Huang, Z. Novel Z-scheme In2S3/Bi2WO6 core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride. Journal of Cleaner Production 2022, 339, 130634. https://doi.org/10.1016/j.jclepro.2022.130634

Wang, S.; Chen, X.; Fang, L.; Gao, H.; Han, M.; Chen, X.; Xia, Y.; Xie, L.; Yang, H. Double heterojunction CQDs/CeO2/BaFe12O19 magnetic separation photocatalysts: Construction, structural characterization, dye and POPs removal, and the interrelationships between magnetism and photocatalysis. Nuclear Analysis 2022, 1(3), 100026. https://doi.org/10.1016/j.nucana.2022.100026

Pan, X.; Tang, S.; Chen, X.; Liu, H.; Yu, C.; Gao, Q.; Zhao, X.; Yang, H.; Gao, H.; Wang, S. Temperature-controlled synthesis of TiO2 photocatalyst with different crystalline phases and its photocatalytic activity in the degradation of different mixed dyes. Russian Journal of Physical Chemistry A 2022, 96, S210-S218. https://doi.org/10.1134/S0036024422140187

Tang, S.; Gao, H.; Wang, S.; Yu, C.; Chen, X.; Liu, H.; Gao, Q.; Yu, X.; Zhao, X.; Sun, G. Temperature dependence of the phase transformation and photoluminescence properties of metastable ZnWO4 bano-phosphors with high UV absorption and VIS reflectance. Russian Journal of Physical Chemistry A 2022, 96, 515-526. https://doi.org/10.1134/S0036024422030220

Wang, S.; Tang, S.; Yang, H.; Wang, F.; Yu, C.; Gao, H.; Fang, L.; Sun, G.; Yi, Z.; Li, D. A novel heterojunction ZnO/CuO piezoelectric catalysts: fabrication, optical properties and piezoelectric catalytic activity for efficient degradation of methylene blue. Journal of Materials Science: Materials in Electronics 2022, 33, 7172-7190. https://doi.org/10.1007/s10854-022-07899-2

Gao, H.; Wang, S.; Wang, Y.; Yang, H.; Wang, F.; Tang, S.; Yi, Z.; Li, D. CaMoO4/CaWO4 heterojunction micro/nanocomposites with interface defects for enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 642, 128642. https://doi.org/10.1016/j.colsurfa.2022.128642

Tang, S.; Gao, H.; Wang, S.; Fang, L.; Chen, X.; Yang, H.; Chen, X,; Liu, H.; Yi, Z. Piezoelectric catalytic, photocatalytic and adsorption capability and selectivity removal of various dyes and mixed dye wastewater by ZnO nanoparticles. Main Group Chemistry 2022, 21, 539-557. https://doi.org/10.3233/MGC-210150

Gao, H.; Tang, S.; Chen, X.; Yu, C.; Wang, S.; Fang, L.; Yu, X.; Zhao, X.; Sun, G.; Yang, H. Facile synthesis of cobalt tungstate with special defect structure with enhanced optical, photoluminescence, and supercapacitive performances. Russian Journal of Physical Chemistry A 2021, 95, S288-S295. https://doi.org/10.1134/S0036024421150103

Gao, H.; Yu, C.; Wang, Y.; Wang, S.; Yang, H.; Wang, F.; Tang, S.; Yi, Z.; Li, D. A novel photoluminescence phenomenon in a SrMoO4/SrWO4 micro/nano heterojunction phosphors obtained by the polyacrylamide gel method combined with low temperature calcination technology. Journal of Luminescence 2022, 243, 118660. https://doi.org/10.1016/j.jlumin.2021.118660

Wang, S.; Gao, H.; Fang, L.; Hu, Q.; Sun, G.; Chen, X.; Yu, C.; Tang, S.; Yu, X.; Zhao, X.; Sun, G. et al. Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chemical Engineering Journal Advances 2021, 6, 100089. https://doi.org/10.1016/j.ceja.2021.100089

Busca, G.; Lorenzelli, V.; Escribano, V.S.; Guidetti, R. FT-IR study of the surface properties of the spinels NiAl2O4 and CoAl2O4 in relation to those of transitional aluminas. Journal of Catalysis 1991, 131, 167-177. https://doi.org/10.1016/0021-9517(91)90333-Y

Bhavani, P.; Manikandan, A.; Paulraj, P.; Dinesh, A.; Durka, M.; Antony, S.A. Okra (Abelmoschus esculentus) plant extract-assisted combustion synthesis and characterization studies of spinel ZnAl2O4 nano-catalysts. Journal of Nanoscience and Nanotechnology 2018, 18(6), 4072-4081. https://doi.org/10.1166/jnn.2018.15217

Li, M.; Wang, S.; Gao, H.; Yin, Z.; Chen, C.; Yang, H.; Fang, L.; Veerabhadrappa, J.A.; Yi, Z.; Li, D. Selective removal of antibiotics over MgAl2O4/C3N4/YMnO3 photocatalysts: Performance prediction and mechanism insight. Journal of the American Ceramic Society 2023, 106, 2420-2442. https://doi.org/10.1111/jace.18946

Wang, S.; Li, M.; Gao, H.; Yin, Z.; Chen, C.; Yang, H.; Fang, L.; Angadi, V.J.; Yi, Z.; Li, D. Construction of CeO2/YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight. Applied Surface Science 2023, 608, 154977. https://doi.org/10.1016/j.apsusc.2022.154977

Song, K.H.; Jeong, S.K.; Jeong, B.H.; Lee, K.Y.; Kim, H.J. Effect of the Ni/Al ratio on the performance of NiAl2O4 spinel-based catalysts for supercritical methylcyclohexane catalytic cracking. Catalysts 2021, 11, 323. https://doi.org/10.3390/catal11030323

Wang, S.; Li, M.; Yin, Z.; Gao, H.; Liu, H.; Yang, H.; Fang, L.; Angadi, V.J.; Hu, L.; Li, D. Skillfully grafted CO functional group to enhance the adsorption/photocatalytic mechanism of YMnO3/MgAl2O4 heterojunction photocatalysts. Advanced Powder Technology 2022, 33, 103771. https://doi.org/10.1016/j.apt.2022.103771

Han, M.; Wang, S.; Chen, X.; Liu, H.; Gao, H.; Zhao, X.; Wang, F.; Yang, H.; Fang, L. Spinel CuB2O4 (B= Fe, Cr, and Al) oxides for selective adsorption of Congo red and photocatalytic removal of antibiotics. ACS Applied Nano Materials 2022, 5, 11194-11207. https://doi.org/10.1021/acsanm.2c02349

Gao, H.; Wang, S.; Fang, L.; Sun, G.; Chen, X.; Tang, S.; Yang, H.; Sun, G.; Li, D. Nanostructured spinel-type M (M= Mg, Co, Zn) Cr2O4 oxides: novel adsorbents for aqueous Congo red removal. Materials Today Chemistry 2021, 22, 100593. https://doi.org/10.1016/j.mtchem.2021.100593

Liu, H.; Wang, S.; Gao, H.; Yang, H.; Wang, F.; Chen, X.; Fang, L.; Tang, S.; Y, Z.; Li, D. A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies. Separation and Purification Technology 2022, 281, 119855. https://doi.org/10.1016/j.seppur.2021.119855

Wang, S.; Wei, X.; Gao, H.; Wei, Y. Effect of amorphous alumina and α-alumina on optical, color, fluorescence properties and photocatalytic activity of the MnAl2O4 spinel oxides. Optik 2019, 185, 301-310. https://doi.org/10.1016/j.ijleo.2019.03.147

Wang, S.; Gao, H.; Fang, L.; Wei, Y.; Li, Y.; Lei, L. Synthesis and characterization of BaAl2O4 catalyst and its photocatalytic activity towards degradation of methylene blue dye. Zeitschrift für Physikalische Chemie 2019, 233, 1161-1181. https://doi.org/10.1515/zpch-2018-1308

Gao, H.; Yang, H.; Wang, S.; Zhao, X. Optical and electrochemical properties of perovskite type MAlO3 (M= Y, La, Ce) pigments synthesized by a gamma-ray irradiation assisted polyacrylamide gel route. Ceramics International 2018, 44, 14754-14766. https://doi.org/10.1016/j.ceramint.2018.05.105

Gao, H.; Yang, H.; Wang, S.; Li, D.; Wang, F.; Fang, L.; Lei, L.; Xiao, Y.; Yang, G. A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties. Journal of Sol-Gel Science and Technology 2018, 86, 206-216. https://doi.org/10.1007/s10971-018-4609-y

Li, Q.; Wang, S.; Yuan, Y.; Gao, H.; Xiang, X. Phase-controlled synthesis, surface morphology, and photocatalytic activity of the perovskite AlFeO3. Journal of Sol-Gel Science and Technology 2017, 82, 500-508. https://doi.org/10.1007/s10971-017-4325-z

Wang, S.; Sun, G.; Fang, L.; Lei, L.; Xiang, X.; Zu, X. A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific reports 2015, 5, 12849. https://doi.org/10.1038/srep12849

Wang, S.; Zhang, C.; Sun, G.; Chen, B.; Xiang, X.; Wang, H.; Fang, L.; Tian, Q.; Ding, Q.; Zu, X. Fabrication of a novel light emission material AlFeO3 by a modified polyacrylamide gel route and characterization of the material. Optical Materials 2013, 36, 482-488. https://doi.org/10.1016/j.optmat.2013.10.014

Wang, S.; Gao, H.; Wei, Y.; Li, Y.; Yang, X.; Fang, L.; Lei, L. Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N-O and C-O functional groups decorating spinel type magnesium aluminate. CrystEngComm 2019, 21, 263-277. https://doi.org/10.1039/C8CE01474D

Wang, S.; Gao, H.; Yu, H.; Li, P.; Li, Y.; Chen, C.; Wang, Y.; Yang, L.; Yin, Z. Optical and photoluminescence properties of the MgAl2O4: M (M= Ti, Mn, Co, Ni) phosphors: calcination behavior and photoluminescence mechanism. Transactions of the Indian Ceramic Society 2020, 79, 221-231. https://doi.org/10.1080/0371750X.2020.1817789

Liu, X.; Wang, S.; Yu, X.; Tang, S.; Fang, L.; Lei, L. Fabrication and photoluminescence properties of MgAl2O4: Mg phosphors. Chinese Journal of Materials Research 2020, 34, 784-792. https://doi.org/10.11901/1005.3093.2020.072

Wang, S.; Gao, H.; Chen, C.; Wei, Y.; Zhao, X. Irradiation assisted polyacrylamide gel route for the synthesize of the Mg1-xCoxAl2O4 nano-photocatalysts and its optical and photocatalytic performances. Journal of Sol-Gel Science and Technology 2019, 92, 186-199. https://doi.org/10.1007/s10971-019-05062-8

Wang, S.; Gao, H.; Li, J.; Wang, Y.; Chen, C.; Yu, X.; ang, S.; Zhao, X.; Sun, G.; Li, D. Comparative study of the photoluminescence performance and photocatalytic activity of CeO2/MgAl2O4 composite materials with an nn heterojunction prepared by one-step synthesis and two-step synthesis methods. Journal of Physics and Chemistry of Solids 2021, 150, 109891. https://doi.org/10.1016/j.jpcs.2020.109891

Li, J.; Wang, S.; Sun, G.; Gao, H.; Yu, X.; Tang, S.; Zhao, X.; Yi, Z.; Wang, Y.; Wei, Y. Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity. Materials Today Chemistry 2021, 19, 100390. https://doi.org/10.1016/j.mtchem.2020.100390

Wang, S.; Wang, Y.; Gao, H.; Li, J.; Fang, L.; Yu, X.; Tang, S.; Zhao, X.; Sun, G. Synthesis and characterization of BaAl2O4: Ce and Mn-Ce-co-doped BaAl2O4 composite materials by a modified polyacrylamide gel method and prediction of photocatalytic activity using artificial neural network (ANN) algorithm. Optik 2020, 221, 165363. https://doi.org/10.1016/j.ijleo.2020.165363

Wang, S.; Gao, H.; Sun, G.; Wang, Y.; Fang, L.; Yang, L.; Lei, L.; Wei, Y. Synthesis of visible-light-driven SrAl2O4-based photocatalysts using surface modification and ion doping. Russian Journal of Physical Chemistry A 2020, 94, 1234-1247. https://doi.org/10.1134/S003602442006031X

Wang, Y.; Wang, S.; Yu, X.; Tang, S.; Han, S.; Yang, L. Irradiation synthesis and characterization of CoAl2O4: Ce and Mn-codoped CoAl2O4: Ce phosphors. Optik 2020, 210, 164508. https://doi.org/10.1016/j.ijleo.2020.164508

Chen, C.; Li, Q.; Zhang, Q.; Li, Y.; Wei, Y.; Wang, S. Artificial neural network algorithm for predict the photocatalytic activity of the Mn co-doped MgAl2O4: Ce composite photocatalyst. In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP) IEEE 2019, 1-5. https://doi.org/10.1109/ICSIDP47821.2019.9173359

Wang, S.; Chen, C.; Li, Y.; Zhang, Q.; Li, Y.; Gao, H. Synergistic effects of optical and photoluminescence properties, charge transfer, and photocatalytic activity in MgAl2O4: Ce and Mn-codoped MgAl2O4: Ce phosphors. Journal of Electronic Materials 2019, 48, 6675-6685. https://doi.org/10.1007/s11664-019-07479-x

Wang, S.; Li, D.; Xiao, Y. Experimental study of structural, surface morphology, optical and luminescence properties of MAl2O4/Al2O3 (M= Co, Ni) composites. Optik 2018, 162, 172-181. https://doi.org/10.1016/j.ijleo.2018.02.071

Sadek, H.E.; Khattab, R.M.; Gaber, A.A.; Zawrah, M.F. Nano Mg1-xNixAl2O4 spinel pigments for advanced applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 125, 353-358. https://doi.org/10.1016/j.saa.2014.01.115

Irshad, A.; Warsi, M.F.; Agboola, P.O.; Dastgeer, G.; Shahid, M. Sol-gel assisted Ag doped NiAl2O4 nanomaterials and their nanocomposites with g-C3N4 nanosheets for the removal of organic effluents. Journal of Alloys and Compounds 2022, 902, 163805.

Medina, F.; Sueiras, J.E.; Cesteros, Y.; Salagre, P. Simple synthesis and characterization of several nickel catalytic precursors. Journal of chemical education 2002, 79, 489. https://doi.org/10.1021/ed079p489

Komeili, S.; Taeb, A.; Takht Ravanchi, M.; Rahimi Fard, M. The properties of nickel aluminate nanoparticles prepared by sol-gel and impregnation methods. Research on Chemical Intermediates 2016, 42, 7909-7921. https://doi.org/10.1007/s11164-016-2568-x

Bayal, N.; Jeevanandam, P. Synthesis of metal aluminate nanoparticles by sol–gel method and studies on their reactivity. Journal of Alloys and Compounds 2012, 516, 27-32. https://doi.org/10.1016/j.jallcom.2011.11.080

Benrabaa, R.; Barama, A.; Boukhlouf, H.; Guerrero-Caballero, J.; Rubbens, A.; Bordes-Richard, E.; Vannier, R.N. Physico-chemical properties and syngas production via dry reforming of methane over NiAl2O4 catalyst. International Journal of Hydrogen Energy 2017, 42, 12989-12996. https://doi.org/10.1016/j.ijhydene.2017.04.030

Leal, E.; de Melo Costa, A.C.; de Freita, N.L.; de Lucena Lira, H.; Kiminami, R.H.; Gama, L. NiAl2O4 catalysts prepared by combustion reaction using glycine as fuel. Materials Research Bulletin 2011, 46, 1409-1413. https://doi.org/10.1016/j.materresbull.2011.05.011

Venkataramana, C.; Botsa, S.M.; Shyamala, P.; Muralikrishna, R. Photocatalytic degradation of polyethylene plastics by NiAl2O4 spinels-synthesis and characterization. Chemosphere 2021, 265, 129021. https://doi.org/10.1016/j.chemosphere.2020.129021

Yancheshmeh, M.S.; Sahraei, O.A.; Aissaoui, M.; Iliuta, M.C. A novel synthesis of NiAl2O4 spinel from a Ni-Al mixed-metal alkoxide as a highly efficient catalyst for hydrogen production by glycerol steam reforming. Applied Catalysis B: Environmental 2020, 265, 118535. https://doi.org/10.1016/j.apcatb.2019.118535

Jeevanandam, P.; Koltypin, Y.; Gedanken, A. Preparation of nanosized nickel aluminate spinel by a sonochemical method. Materials Science and Engineering: B 2002, 90, 125-132. https://doi.org/10.1016/S0921-5107(01)00928-X

Gama, L.; Ribeiro, M.A.; Barros, B.S.; Kiminami, R.H.; Weber, I.T.; Costa, A.C. Synthesis and characterization of the NiAl2O4, CoAl2O4 and ZnAl2O4 spinels by the polymeric precursors method. Journal of Alloys and Compounds 2009, 483, 453-455. https://doi.org/10.1016/j.jallcom.2008.08.111

Han, Y.S.; Li, J.B.; Ning, X.S.; Chi, B. Effect of preparation temperature on the lattice parameter of nickel aluminate spinel. Journal of the American Ceramic Society 2004, 87, 1347-1349. https://doi.org/10.1111/j.1151-2916.2004.tb07733.x

Davar, F.; Salavati-Niasari, M. Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol-gel method using new precursor. Journal of Alloys and Compounds 2011, 509, 2487-2492. https://doi.org/10.1016/j.jallcom.2010.11.058

Kunde, G.B.; Sehgal, B. Application of sol-gel assisted ultrasound-induced atomization in the mesostructuring of nickel aluminate UF membranes. Microporous and Mesoporous Materials 2021, 325, 111299. https://doi.org/10.1016/j.micromeso.2021.111299

Maddahfar, M.; Ramezani, M.; Sadeghi, M.; Sobhani-Nasab, A. NiAl2O4 nanoparticles: synthesis and characterization through modify sol-gel method and its photocatalyst application. Journal of Materials Science: Materials in Electronics 2015, 26, 7745-7750. https://doi.org/10.1007/s10854-015-3419-z

Zhang, S.; Ying, M.; Yu, J.; Zhan, W.; Wang, L.; Guo, Y.; Guo, Y. NixAl1O2-δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism. Applied Catalysis B: Environmental 2021, 291, 120074. https://doi.org/10.1016/j.apcatb.2021.120074

Abdulmajeed, I.M.; Mahdi, D.K.; Ibraheem, S.H. Structural characterization of nickel and zinc aluminate prepared by sol-gel technique. In AIP Conference Proceedings 2021, 2372, 100005 https://doi.org/10.1063/5.0066247

de Melo Costa, A.C.; Diniz, A.P.; Gama, L.; Morelli, M.R.; Kiminami, R.H. Comparison of Ni-Zn ferrite powder preparation by combustion reaction using different synthesization routes. In Journal of Metastable and Nanocrystalline Materials 2004, 20, 582-587. https://doi.org/10.4028/www.scientific.net/JMNM.20-21.582

Visinescu, D.; Jurca, B.; Ianculescu, A.; Carp, O. Starch–A suitable fuel in new low-temperature combustion-based synthesis of zinc aluminate oxides. Polyhedron 2021, 30, 2824-2831. https://doi.org/10.1016/j.poly.2011.08.006

Patil, K.C.; Aruna, S.T.; Ekambaram, S. Combustion synthesis. Current opinion in solid state and materials science 1997, 2, 158-165. https://doi.org/10.1016/S1359-0286(97)80060-5

Kingsley, J.J.; Patil, K.C. A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Materials letters 1988, 6, 427-432. https://doi.org/10.1016/0167-577X(88)90045-6

Stella, K.C.; Nesaraj, A.S. Effect of fuels on the combustion synthesis of NiAl2O4 spinel particles. Iranian Journal of Materials Science & Engineering 2010, 7, 36-44. chrome-extension://ibllepbpahcoppkjjllbabhnigcbffpi/https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b7e90efc77e1c22033e720a0e300b97093cd0f68

Ragupathi, C.; Vijaya, J.J.; Surendhar, P.; Kennedy, L.J. Comparative investigation of nickel aluminate (NiAl2O4) nano and microstructures for the structural, optical and catalytic properties. Polyhedron 2014, 72, 1-7.

http://dx.doi.org/10.1016/j.poly.2014.01.013

Ragupathi, C.; Vijaya, J.J.; Kennedy, L.J. Synthesis, characterization of nickel aluminate nanoparticles by microwave combustion method and their catalytic properties. Materials Science and Engineering: B 2014, 184, 18-25. https://doi.org/10.1016/j.mseb.2014.01.010

Manikandan, A.; Antony, S. A novel approach for the synthesis and characterization studies of Mn-doped CdS nanocrystals by a facile microwave-assisted combustion method. Journal of Superconductivity & Novel Magnetism 2014, 27, 2725-2733. https://doi.org/10.1007/s10948-014-2634-9

Sivakumar, P.; Ramesh, R.; Ramanand, A.; Ponnusamy, S.; Muthamizhchelvan, C. Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol-gel auto-combustion method. Materials Research Bulletin 2011, 46, 2204-2207. https://doi.org/10.1016/j.materresbull.2011.09.010

Yue, Z.; Zhou, J.; Li, L.; Zhang, H.; Gui, Z. Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials 2000, 208, 55-60. https://doi.org/10.1016/S0304-8853(99)00566-1

Slatineanu, T.; Iordan, A.R.; Palamaru, M.N.; Caltun, O.F.; Gafton, V.; Leontie, L. Synthesis and characterization of nanocrystalline Zn ferrites substituted with Ni. Materials Research Bulletin 2011, 46, 1455-1460. https://doi.org/10.1016/j.materresbull.2011.05.002

Tangcharoen, T.; Klysubun, W.; Kongmark, C. Synchrotron X-ray absorption spectroscopy and cation distribution studies of NiAl2O4, CuAl2O4, and ZnAl2O4 nanoparticles synthesized by sol-gel auto combustion method. Journal of Molecular Structure 2019, 1182, 219-229. https://doi.org/10.1016/j.molstruc.2019.01.049

Tangcharoen, T.; T-Thienprasert, J.; Kongmark, C. Optical properties and versatile photocatalytic degradation ability of MAl2O4 (M= Ni, Cu, Zn) aluminate spinel nanoparticles. Journal of Materials Science: Materials in Electronics 2018, 29, 8995-9006. https://doi.org/10.1007/s10854-018-8924-4

Chen, C.; Wang, L.; Li, R.; Jiang, G.; Yu, H.; Chen, T. Effect of silver nanowires on electrical conductance of system composed of silver particles. Journal of Materials Science 2007, 42, 3172-3176. https://doi.org/10.1007/s10853-007-1594-x

Irshad, A.; Somaily, H.H.; Zulfiqar, S.; Warsi, M.F.; Din, M.I.; Chaudhary, K.; Shahid, M. Silver doped NiAl2O4 nanoplates anchored onto the 2D graphitic carbon nitride sheets for high-performance supercapacitor applications. Journal of Alloys and Compounds 2023, 934, 167705. https://doi.org/10.1016/j.jallcom.2022.167705

Elakkiya, V.; Agarwal, Y.; Sumathi, S. Photocatalytic activity of divalent ion (copper, zinc and magnesium) doped NiAl2O4. Solid State Sciences 2018, 82, 92-98. https://doi.org/10.1016/j.solidstatesciences.2018.06.008

Akika, F.Z.; Benamira, M.; Lahmar, H.; Tibera, A.; Chabi, R.; Avramova, I.; Suzer, S.; Trari, M. Structural and optical properties of Cu-substitution of NiAl2O4 and their photocatalytic activity towards Congo red under solar light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2018, 364, 542-550. https://doi.org/10.1016/j.jphotochem.2018.06.049

Regulska, E.; Breczko, J.; Basa, A.; Niemirowicz-Laskowska, K.; Kiszkiel-Taudul, I. Photocatalytic degradation of oxytetracycline with the REMs (Er, Tm, Yb)-doped nickel and copper aluminates. Materials Science and Engineering: B 2022 ,285, 115959. https://doi.org/10.1016/j.mseb.2022.115959

Dhara, A.; Sain, S.; Ray, A.; Das, S.; Kumar Pradhan, S. Microstructure analysis, optical, and electrical transport properties of NiAl2O4/Al2O3 nanocomposite powder. Physica Status Solidi (a) 2022, 219, 2200386. https://doi.org/10.1002/pssa.202200386

Arunkumar, M.; Nesaraj, A.S.; Christy, C.E.; Kennady, C.J. Enhanced photocatalytic efficiency of soft chemically synthesized MAl2O4/activated carbon based composite in the removal of toxic malachite green dye under visible light. Research Square 2021. https://doi.org/10.21203/rs.3.rs-697853/v1

Kunde, G.B.; Sehgal, B.; Ganguli, A.K. Modified EISA synthesis of NiAl2O4/MWCNT composite mesoporous free-standing film as a potential electrochemical capacitor material. Journal of Alloys and Compounds 2021, 856, 158019. https://doi.org/10.1016/j.jallcom.2020.158019

Muralidharan, P.; Prakash, I.; Venkateswarlu, M.; Satyanarayana, N. Sol-gel synthesis and structural characterization of nanocomposite powder: NiAl2O4: SiO2. Nanotech 2004, 3, 327-329. www.nsti.org, ISBN 0-9728422-9-2

Ahmad, N.; Kuo, C.F.; Mustaqeem, M.; Hussien, M.K.; Chen, K.H. Improved photocatalytic activity of novel NiAl2O4/g-C3N4 binary composite for photodegradation of 2, 4-dinitrophenol and CO2 reduction via gas phase adsorption. Materials Today Physics 2023, 100965. https://doi.org/10.1016/j.mtphys.2023.100965

Regulska, E.; Breczko, J.; Basa, A. Pristine and graphene-quantum-dots-decorated spinel nickel aluminate for water remediation from dyes and toxic pollutants. Water 2019, 11, 953. https://doi.org/10.3390/w11050953

Peña, J.A.; Rodríguez, J.C.; Herguido, J.; Santamaría, J.; Monzón, A. Influence of the catalyst pretreatment on the relative rates of the main and coking reactions during acetylene hydrogenation on a NiO/NiAl2O4 catalyst. In Studies in Surface Science and Catalysis 1994, 88, 555-560. https://doi.org/10.1016/S0167-2991(08)62787-1

Numaguchi, T.; Eida, H.; Shoji, K. Reduction of NiAl2O4 containing catalysts for steam methane reforming reaction. International journal of hydrogen energy 1997, 22, 1111-1115. https://doi.org/10.1016/S0360-3199(97)00007-4

Cesteros, Y.; Salagre, P.; Medina, F.; Sueiras, J.E. Synthesis and characterization of several Ni/NiAl2O4 catalysts active for the 1, 2, 4-trichlorobenzene hydrodechlorination. Applied Catalysis B: Environmental 2000, 25, 213-227. https://doi.org/10.1016/S0926-3373(99)00133-2

Kou, L.; Selman, J.R. Activity of NiAl2O4 catalyst for steam reforming of methane under internal reforming fuel cell conditions. ECS Proceedings Volumes, 1999, 19, 640. https://doi.org/10.1149/199919.0640PV

Pena, J.A.; Herguido, J.; Guimon, C.; Monzón, A.; Santamarı́a, J. Hydrogenation of acetylene over Ni/NiAl2O4 catalyst: Characterization, coking, and reaction studies. Journal of Catalysis 1996, 159, 313-322. https://doi.org/10.1006/jcat.1996.0093

Zhang, X.; Yu, L.; Zhuang, C.; Peng, T.; Li, R.; Li, X. Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2 production under near-infrared light. ACS Catalysis 2014, 4, 162-170. https://doi.org/10.1021/cs400863c

Chan, Y.T.; Wu, C.H.; Shen, P.; Chen, S.Y. Nickel aluminate oxides/hydroxides by pulsed laser ablation of NiAl2O4 powder in water. Applied Physics A 2014, 116, 1065-1073. https://doi.org/10.1007/s00339-013-8183-4

Salleh, N.F.; Jalil, A.A.; Triwahyono, S.; Efendi, J.; Mukti, R.R.; Hameed, B.H. New insight into electrochemical-induced synthesis of NiAl2O4/Al2O3: Synergistic effect of surface hydroxyl groups and magnetism for enhanced adsorptivity of Pd (II). Applied Surface Science 2015, 349, 485-495. https://doi.org/10.1016/j.apsusc.2015.05.048

Arunkumar, M.; Nesaraj, A.S. One pot chemical synthesis of ultrafine NiAl2O4 nanoparticles: physico-chemical properties and photocatalytic degradation of organic dyes under visible light irradiation. Inorganic and Nano-Metal Chemistry 2021, 51, 910-917. https://doi.org/10.1080/24701556.2020.1813173

Gayathri, R.C.; Elakkiya, V.; Sumathi, S. Synthesis of cerium and bismuth doped nickel aluminate for the photodegradation of methylene blue, methyl orange and rhodamine B dyes. Chemosphere 2022, 303, 135056. https://doi.org/10.1016/j.chemosphere.2022.135056

Bakhtiarvand, S.; Hassanzadeh Tabrizi, S.A. Polymer-assisted synthesis and characterization of nickel aluminate nanoparticles for photodegradation of methylene blue. Journal of Advanced Materials and Processing 2021, 9, 13-22. ttps://journals.iau.ir/article_688905_5bd7e638eadb36538eb062478581f07f.pdf

Rahimi-Nasrabadi, M.; Ahmadi, F.; Eghbali-Arani, M. Different morphologies fabrication of NiAl2O4 nanostructures with the aid of new template and its photocatalyst application. Journal of Materials Science: Materials in Electronics 2017, 28, 2415-2420. https://doi.org/10.1007/s10854-016-5812-7

Nandana, B.; Dedhila, D.; Baiju, V.; Sajeevkumar, G. NiAl2O4 nanocomposite via combustion synthesis for sustainable environmental remediation. Nanosistemi, Nanomateriali, Nanotehnolog 2022, 20, 459-472. chrome-extension://ibllepbpahcoppkjjllbabhnigcbffpi/https://www.imp.kiev.ua/nanosys/media/pdf/2022/2/nano_vol20_iss2_p0459p0472_2022.pdf

Arunkumar, M.; Samson Nesaraj, A. Photocatalytic degradation of malachite green dye using NiAl2O4 and Co doped NiAl2O4 nanophotocatalysts prepared by simple one pot wet chemical synthetic route. Iranian Journal of Catalysis 2020, 10, 235-245. https://journals.iau.ir/article_675392_e95b6d9a6e14ac173fe83940f1a24a79.pdf

Liang, H.; Zhu, C.; Wang, A.; Palanisamy, K.; Chen, F. Facile synthesis of NiAl2O4/g-C3N4 composite for efficient photocatalytic degradation of tetracycline. Journal of Environmental Sciences 2023, 127, 700-713. https://doi.org/10.1016/j.jes.2022.06.032

Ramos-Ramírez, E.; Gutiérrez-Ortega, N.L.; Tzompantzi-Morales, F.; Barrera-Rodríguez, A.; Castillo-Rodríguez, J.C.; Tzompantzi-Flores, C.; Santolalla-Vargas, C.; Guevara-Hornedo, M.D. Photocatalytic degradation of 2, 4-Dichlorophenol on NiAl-mixed oxides derivatives of activated layered double hydroxides. Topics in Catalysis 2020, 63, 546-563. https://doi.org/10.1007/s11244-020-01269-0

Suguna, S.; Shankar, S.; Jaganathan, S.K.; Manikandan, A. Novel synthesis and characterization studies of spinel NixCo1−xAl2O4 (x= 0.0 to 1.0) nano-catalysts for the catalytic oxidation of benzyl alcohol. Journal of Nanoscience and Nanotechnology 2018, 18, 1019-1026. https://doi.org/10.1166/jnn.2018.13960

Boukha, Z.; Jiménez-González, C.; Gil-Calvo, M.; de Rivas, B.; González-Velasco, J.R.; Gutiérrez-Ortiz, J.I.; López-Fonseca, R. MgO/NiAl2O4 as a new formulation of reforming catalysts: Tuning the surface properties for the enhanced partial oxidation of methane. Applied Catalysis B: Environmental 2016, 199, 372-383. https://doi.org/10.1016/j.apcatb.2016.06.045

Gil-Calvo, M.; Jimenez-Gonzalez, C.; de Rivas, B.; Gutiérrez-Ortiz, J.I.; Lopez-Fonseca, R. Effect of Ni/Al molar ratio on the performance of substoichiometric NiAl2O4 spinel-based catalysts for partial oxidation of methane. Applied Catalysis B: Environmental 2017, 209, 128-138. https://doi.org/10.1016/j.apcatb.2017.02.063

López-Fonseca, R.; Jiménez-González, C.; de Rivas, B.; Gutiérrez-Ortiz, J.I. Partial oxidation of methane to syngas on bulk NiAl2O4 catalyst. Comparison with alumina supported nickel, platinum and rhodium catalysts. Applied Catalysis A: General 2012, 437, 53-62. https://doi.org/10.1016/j.apcata.2012.06.014

Li, D.; Li, Y.; Liu, X.; Guo, Y.; Pao, C.W.; Chen, J.L.; Wang, Y. NiAl2O4 spinel supported Pt catalyst: high performance and origin in aqueous-phase reforming of methanol. ACS Catalysis 2019, 9, 9671-9682. https://doi.org/10.1021/acscatal.9b02243

Bouallouche, R.; Kebir, M.; Nasrallah, N.; Hachemi, M.; Amrane, A.; Trari, M. Enhancement of photocatalytic reduction of Cr (VI) using the hetero-system NiAl2O4/ZnO under visible light. Algerian Journal of Environmental Science and Technology 2019, 5. http://aljest.org/index.php/aljest/article/view/24/24

Saati, M.M.; Hamidi, S.; Jarolmasjed, N.; Rezvani, Z.; Davari, S. Removal of direct red 23 dye using CeO2/NiO/NiAl2O4 nanocomposite: Mechanism, kinetic, thermodynamic, and equilibrium studies. Analytical and Bioanalytical Chemistry Research 2023, 10, 45-62. https://doi.org/10.22036/ABCR.2022.348535.1788

Sebai, I.; Salhi, N.; Rekhila, G.; Trari, M. Visible light induced H2 evolution on the spinel NiAl2O4 prepared by nitrate route. International Journal of hydrogen energy 2017, 42, 26652-26658. https://doi.org/10.1016/j.ijhydene.2017.09.092

Li, Q.; Yang, Y.; Lu, S.; Bai, X.; Zhang, Y.; Shi, L.; Ling, C.; Wang, J. Perspective on theoretical methods and modeling relating to electro-catalysis processes. Chemical Communications 2020, 56, 9937-9949. https://doi.org/10.1039/D0CC02998J

Han, Y.; Wang, S.; Li, M.; Gao, H.; Han, M.; Yang, H.; Fang, L.; Angadi, J.V.; Rehim, A.A.; Ali, A.M.; Li, D. Strontium-induced phase, energy band and microstructure regulating in Ba1-xSrxTiO3 photocatalysts for boosting visible-light photocatalytic activity. Catalysis Science & Technology 2023, Accepted. https://doi.org/10.1039/D3CY00278K

Sivakumar, M.; Pandi, K.; Chen, S.W.; Yadav, S.; Chen, T.W.; Veeramani, V. Highly sensitive detection of gallic acid in food samples by using robust NiAl2O4 nanocomposite materials. Journal of the Electrochemical Society 2019, 166, B29. https://doi.org/10.1149/2.0121902jes

Aman, S.; Farid, H.M.; Manzoor, S.; Ashiq, M.N.; Khosa, R.Y.; Elsayed, K.A.; Mahmoud, K.H.; Taha, T.A.; Waheed, M.S.; Abdullah, M. High performance graphene oxide/NiAl2O4 directly grown on carbon cloth hybrid for oxygen evolution reaction. International Journal of Hydrogen Energy 2022; 47, 34299-34311. https://doi.org/10.1016/j.ijhydene.2022.08.033

Al-Dahawi, A.; Öztürk, O.; Emami, F.; Yıldırım, G.; Şahmaran, M. Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbon-based materials. Construction and Building Materials 2016, 104, 160-168. https://doi.org/10.1016/j.conbuildmat.2015.12.072

Regulska, E.; Breczko, J.; Basa, A.; Szydlowska, B.; Kakareko, K.; Rydzewska-Rosołowska, A.; Hryszko, T. Graphene-quantum-dots-decorated NiAl2O4 nanostructure as supercapacitor and electrocatalyst in biosensing. Materials Today Communications 2022, 33, 104166. https://doi.org/10.1016/j.mtcomm.2022.104166

Downloads

Published

2023-04-18

How to Cite

Yu, X. ., Wang, S. ., & Gao, H. . (2023). Spinel NiAl2O4 Based Catalysts: Past, Present and Future. Journal of Environmental Science and Engineering Technology, 11, 12–27. https://doi.org/10.12974/2311-8741.2023.11.02

Issue

Section

Articles