Non-Steady State and Steady State Silicate Dissolution: Non- Carbonate Acid Neutralisation for Long-Term Acid and Metalliferous Drainage Control
DOI:
https://doi.org/10.12974/2311-8741.2019.7.13Keywords:
Acid and metalliferous drainage, Flow-through dissolution, Non-steady state dissolution, Pyrite oxidation, Steady-state dissolution, Silicate mineralsAbstract
The dissolution of silicate minerals has been largely examined under steady state conditions. The primary aim of this study was to understand the potential of the non-steady state dissolution of silicate minerals in treatment of acid and metalliferous drainage (AMD) resulting predominantly from pyrite oxidation. To this end, flow-through dissolution cell experiments were carried out using selected silicate minerals (biotite, chlorite, olivine and K-feldspar), all commonly found in AMD environments, under various pH and flow rate conditions, for comparison to pyrite dissolution carried out under the same conditions. Both acid generation rate (pyrite) and steady-state and non-steady state acid neutralisation rates (silicates) were calculated and compared. Results showed that the non-steady state acid neutralisation rates due to silicate dissolution were greater than the steady-state neutralisation rates and that all silicate minerals investigated in this study, except K-feldspar, can provide acid neutralisation rates to match the acid generation rate due to pyrite dissolution under certain conditions.
References
Fan R, Short M, Zeng SJ, Qian G, Li J, Schumann R, Kawashima N, Smart RSC, Gerson AR. The formation of silicate-stabilised passivating layers on pyrite for reduced acid rock drainage. Environmental Science & Technology. 2017; 51(19): 11317-11325. https://doi.org/10.1021/acs.est.7b03232
Qian G, Fan R, Short MD, Schumann RC, Pring A, Gerson AR. The Combined Effects of Galvanic Interaction and Silicate Addition on the Oxidative Dissolution of Pyrite: Implications for Acid and Metalliferous Drainage Control. Environmental Science & Technology. 2019; 53(20): 11922- 11931. https://doi.org/10.1021/acs.est.9b03965
Zhou Y, Short MD, Li J, Schumann RC, Smart RSC, Gerson AR, Qian G, editors. Potential strategies for sustainable control of acid generation from pyrite oxidation. In 13th International Mine Water Association Congress - Mine Water & Circular Economy (Eds. Wolkersdorfer C, Sartz L, Sillanpää M, Häkkinen, A); 25-30 June, 2017; Lappeenranta, Finland, LUT Scientific and Expertise Publications.
Zhou Y, Short MD, Li J, Fan R, Qian G. Non-carbonate geochemical options for long-term sustainable acid and metalliferous drainage control at-source. Environmental Earth Sciences. 2019; 78(5): 157. https://doi.org/10.1007/s12665-019-8169-4
Smart R, Skinner W, Levay G, Gerson A, Thomas J, Sobieraj H, Schumann R, Weisener C, Weber P, Miller S. ARD test handbook: Project P387, A prediction and kinetic control of acid mine drainage. AMIRA, International Ltd, Ian Wark Research Institute, Melbourne, Australia. 2002.
Smart RSC, Weber PA, Thomas JE, Skinner WM, Stewart WA, Miller SD. Improvements in acid rock drainage testing for short and long term neutralisation kinetics. Applied Geochemistry 2004, 12.
Miller SD, Stewart WS, Rusdinar Y, Schumann RE, Ciccarelli JM, Li J, Smart RSC. Methods for estimation of long-term non-carbonate neutralisation of acid rock drainage. Science of the Total Environment. 2010; 408(9): 2129-2135. https://doi.org/10.1016/j.scitotenv.2010.01.011
Palandri JL, Kharaka YK. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling Menlo Park, California, USA; 2004 2004. https://doi.org/10.3133/ofr20041068
Pokrovsky OS, Schott J. Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control. Geochimica et Cosmochimica Acta. 2004; 68(1): 31-45. https://doi.org/10.1016/S0016-7037(03)00238-2
Arvidson RS, Luttge A. Mineral dissolution kinetics as a function of distance from equilibrium - New experimental results. Chemical Geology. 2010; 269(1): 79-88. https://doi.org/10.1016/j.chemgeo.2009.06.009
Köhler SJ, Bosbach D, Oelkers EH. Do clay mineral dissolution rates reach steady state? Geochimica et Cosmochimica Acta. 2005; 69(8): 1997-2006. https://doi.org/10.1016/j.gca.2004.10.015
Qian G, Fan R, Short MD, Schumann RC, Li J, Li Y, Smart RSC, Gerson AR. Evaluation of the rate of dissolution of secondary sulfate minerals for effective acid and metalliferous drainage mitigation. Chemical Geology. 2019; 504: 14-27. https://doi.org/10.1016/j.chemgeo.2018.12.003
Zhou Y, Fan R, Short MD, Li J, Schumann RC, Xu H, Smart RSC, Gerson AR, Qian G. Formation of Aluminum Hydroxide-Doped Surface Passivating Layers on Pyrite for Acid Rock Drainage Control. Environmental Science & Technology. 2018; 52(20): 11786-11795. https://doi.org/10.1021/acs.est.8b04306
Geelhoed JS, Meeussen JC, Hillier S, Lumsdon DG, Thomas RP, Farmer JG, Paterson E. Identification and geochemical modeling of processes controlling leaching of Cr (VI) and other major elements from chromite ore processing residue. Geochimica et cosmochimica acta. 2002; 66(22): 3927-3942. https://doi.org/10.1016/S0016-7037(02)00977-8
Qian G, Schumann RC, Li J, Short MD, Fan R, Li Y, Kawashima N, Zhou Y, Smart RSC, Gerson AR. Strategies for Reduced Acid and Metalliferous Drainage by Pyrite Surface Passivation. Minerals. 2017; 7(3): 42. https://doi.org/10.3390/min7030042
Mattson B, editor Assessing the availability and source of non-carbonate neutralisation potential by pretreatment of kinetic test samples. Proc 8th Int Conf Acid Rock Drainage (8 ICARD), Skellefteå, Sweden; 2009.
Sherlock E, Lawrence R, Poulin R. On the neutralization of acid rock drainage by carbonate and silicate minerals. Environmental Geology. 1995; 25(1): 43-54. https://doi.org/10.1007/BF01061829
Olsen AA, Rimstidt JD. Oxalate-promoted forsterite dissolution at low pH. Geochimica et cosmochimica acta. 2008; 72(7): 1758-1766. https://doi.org/10.1016/j.gca.2007.12.026
Pokrovsky OS, Schott J. Forsterite surface composition in aqueous solutions: a combined potentiometric, electrokinetic, and spectroscopic approach. Geochimica et cosmochimica acta. 2000; 64(19): 3299-3312. https://doi.org/10.1016/S0016-7037(00)00435-X
Wogelius RA, Walther JV. Olivine dissolution at 25 C: Effects of pH, CO2, and organic acids. Geochimica et Cosmochimica Acta. 1991; 55(4): 943-954. https://doi.org/10.1016/0016-7037(91)90153-V
Olsen AA. Forsterite dissolution kinetics: applications and implications for chemical weathering: Virginia Tech; 2007.
Kalinowski BE, Schweda P. Rates and nonstoichiometry of vermiculite dissolution at 22 C. Geoderma. 2007; 142(1-2): 197-209. https://doi.org/10.1016/j.geoderma.2007.08.011
Metz V, Amram K, Ganor J. Stoichiometry of smectite dissolution reaction. Geochimica et cosmochimica acta. 2005; 69(7): 1755-1772. https://doi.org/10.1016/j.gca.2004.09.027
Acker JG, Bricker OP. The influence of pH on biotite dissolution and alteration kinetics at low temperature. Geochimica et Cosmochimica Acta. 1992; 56(8): 3073-3092. https://doi.org/10.1016/0016-7037(92)90290-Y
Morin K, Hutt N. A case study of important aluminosilicate neutralization. Internet Case Study 25, http://www MDAG com. 2011.
Brandt FB, Dirk Krawczyk-Bärsch, Evelyn Arnold, Thuro Bernhard, Gert. Chlorite dissolution in the acid pH-range: a combined microscopic and macroscopic approach 2003. https://doi.org/10.1016/S0016-7037(02)01293-0
Cama J, Metz V, Ganor J. The effect of pH and temperature on kaolinite dissolution rate under acidic conditions. Geochimica et cosmochimica acta. 2002; 66(22): 3913-3926. https://doi.org/10.1016/S0016-7037(02)00966-3
Knauss KG. Muscovite dissolution kinetics as a function of pH and time at 70 C 1989. https://doi.org/10.1016/0016-7037(89)90232-9
Malmström M, Banwart S. Biotite dissolution at 25°C: The pH dependence of dissolution rate and stoichiometry. Geochimica et Cosmochimica Acta. 1997; 61(14): 2779- 2799. https://doi.org/10.1016/S0016-7037(97)00093-8
Brandt F, Bosbach D, Krawczyk-Bärsch E, Arnold T, Bernhard G. Chlorite dissolution in the acid ph-range: a combined microscopic and macroscopic approach. Geochimica et Cosmochimica Acta. 2003; 67(8): 1451-1461. https://doi.org/10.1016/S0016-7037(02)01293-0
Oelkers EH. General kinetic description of multioxide silicate mineral and glass dissolution. Geochimica et cosmochimica acta. 2001; 65(21): 3703-3719. https://doi.org/10.1016/S0016-7037(01)00710-4
Chou L, Wollast R. Steady-state kinetics and dissolution mechanisms of albite. American Journal of Science. 1985; 285(10): 963-993. https://doi.org/10.2475/ajs.285.10.963
Holdren Jr GR, Speyer PM. Reaction rate-surface area relationships during the early stages of weathering-I. Initial observations. Geochimica et Cosmochimica Acta. 1985; 49(3): 675-681. https://doi.org/10.1016/0016-7037(85)90162-0
Paktunc A. Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environmental Geology. 1999; 39(2): 103-112. https://doi.org/10.1007/s002540050440
Palandri JL, Kharaka YK. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling. DTIC Document; 2004. https://doi.org/10.3133/ofr20041068
Lowson RT, Comarmond MCJ, Rajaratnam G, Brown PL. The kinetics of the dissolution of chlorite as a function of pH and at 25 °C. Geochimica et cosmochimica acta. 2005; 69(7): 1687-1699. https://doi.org/10.1016/j.gca.2004.09.028
Schweda P, Kalinowski B. Dissolution rates and alteration of muscovite, phlogopite and biotite at pH 1 to 4 and room temperature. Goldschmidt Conference, Edinburgh, UK, 1994; pp. 817-818. https://doi.org/10.1180/minmag.1994.58A.2.161
Bray AW, Oelkers EH, Bonneville S, Wolff-Boenisch D, Potts NJ, Fones G, Benning LG. The effect of pH, grain size, and organic ligands on biotite weathering rates. Geochimica et cosmochimica acta 2015; 164: 127-145. https://doi.org/10.1016/j.gca.2015.04.048