Antibiofilm Activity and Biocorrosion Control by Means of Essential Oil from Lippiagracilis Schauer (Verbenaceae) Microemulsion System
DOI:
https://doi.org/10.12974/2311-8741.2019.07.09Keywords:
Microbiologically influenced corrosion, Microemulsion, Antibiofouling, Essential oil, Lippiagracilis Schauer, BiofilmsAbstract
In this study the use of the essential oil from a Lippiagracilis Schauer micro emulsion system as a biocide and antibiofouling agent upon biofilms as well as the effect of this micro emulsion on the corrosion rate of AISI 1020 carbon steel was investigated. The results showed that a microemulsion type Winsor-IV was efficient in preventing the biofouling formation after 96 hours of contact and inhibited the growth of the sulfate reducing, iron-oxidizing bacteria as well as the fungi forming the biofilms after the 16 days of contact time. The antimicrobial action was likely due to a formation of a protective film.
References
Abdel-Gaber M, Khamis E, Hefnawy A. 2011.Utilizing Arghel extract as corrosion inhibitor for reinforced steel in concrete. Material and Corrosion.62: 1159. https://doi.org/10.1002/maco.201005653
Abiola OK, James AO. 2010. The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution. Corrosion Science. 52: 661. https://doi.org/10.1016/j.corsci.2009.10.026
Albuquerque CC, Camara TR, Mariano RLR, Willadino L, Júnior CM, Ulisses C. 2006. Antimicrobial action of the essential oil of Lippiagracilis Schauer. Brazilian Archives of Biology and Technology. 49: 527-535. https://doi.org/10.1590/S1516-89132006000500001
Baeza S, Vejar N, Gulppi M, Azocar M, Melo F, Monsalve A, Pérez-Donoso J, Vásquéz CC, Pavez J, Zagal JH, Zhou X, Thompson GE, Páez MA. 2013. New evidence on the role of catalase in Escherichia coli-mediated biocorrosion. Corrosion Science. 67: 32-41. https://doi.org/10.1016/j.corsci.2012.09.047
Bakkali F, Averbeck S, Averbeck D, Idaomar, M. 2008. Biological effects of essential oils - A review. Food and Chemical Toxicology. 46: 446-475. https://doi.org/10.1016/j.fct.2007.09.106
Beech IB, Sunner JA, Hiraoka K. 2005. Microbe-surface interactions in biofouling and biocorrosion processes. International Microbiology. 8: 157-168.
Benahmed M, Selatnia I, Achouri A, Laouer H, Gherraf N, Akkal S. 2013. Steel corrosion inhibition by Bupleurumlancifolium (Apiaceae) extract in acid solution. Transactions of the Indian Institute of Metals. 68: 393-401. https://doi.org/10.1007/s12666-014-0466-8
Bhola SM, Alabbas FM, Bhola R, Spear JR, Mishra B, Olson DL, Kakpovbia AE. 2014. Neem extract as an inhibitor for biocorrosion influenced by sulfate reducing bacteria: a preliminary investigation. Engineering Failure Analysis. 36: 92-103. https://doi.org/10.1016/j.engfailanal.2013.09.015
Bitu VCN, Fecundo HDTF, Costa JGM, Coutinho HDM, Rodrigues FFG, Santana NM, Botelho MA, Menezes IRA. 2014. Chemical composition of the essential oil of Lippiagracilis Shauer leaves and its potential as modulator of bacterial resistance. Natural ProductResearch. 28: 399-402. https://doi.org/10.1080/14786419.2013.867343
Botelho MA, Nogueira NA, Bastos GM, Fonseca SG, Lemos TL, Matos FJ, Montenegro D, Heukelbach J, Rao VS, Brito GA. 2007. Antimicrobial activity of the essential oil from Lippiasidoides, carvacrol and thymol against oral pathogens. Brazilian Journal Medical Biological Research. 40: 349-356. https://doi.org/10.1590/S0100-879X2007000300010
Bouyanzer A, Hammouti B, Majidi L, Haloui B. 2010. Testing Natural Fenugreek as an Ecofriendly Inhibitor for Steel Corrosion in 1 M HCl. Portugaliae Electrochimica Acta 28: 165. https://doi.org/10.4152/pea.201003165
Boyle KE, Heilmann S, Ditmarsch D, Xavier JB. 2013. Exploiting social evolution in biofilms. Currentopinion in Microbiology. 16: 1-6. https://doi.org/10.1016/j.mib.2013.01.003
Costa SMO, Lemos TLG, Rodrigues FFG, Pessoa ODL, Pessoa C, Montenegro RC, Braz-Filho R. 2001. Chemical constituents from Lippiasidoides and cytotoxic activity. Journal Natural Products. 64: 792-795. https://doi.org/10.1021/np0005917
Dantas TNC, Ferreira EM, Scatena H, Dantas AAN. 2002. Microemulsion system as a steel corrosion inhibitor.Corrosion. 58: 723-727. https://doi.org/10.5006/1.3277654
DjeddiN, Benahmed M, Akkal S, Laouer H, Makhloufi E, Gherraf N. 2015. Study on methylene dichloride and butanolic extracts of Reuteralutea (Desf.) Maire (Apiaceae) as effective corrosion inhibitions for carbon steel in HCl solution. Research on Chemical Intermediates. 41: 4595- 4616. https://doi.org/10.1007/s11164-014-1555-3
Dormans HJ, Deans SG. 2000. Antimicrobial agents from plants: antibacterial activity of plants volatile oils. Journal Applied Microbiology. 88: 308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
El ouariachi E, Bouyanzer A, Salghi R, Hammouti B, Desjobert J-M, Costa J, Paolini J, Majidi L. 2015. Inhibition of corrosion of mild steel in 1 M HCl by the essential oil or solvent extracts of Ptychotisverticillata. Research on Chemical Intermediates. 41: 935-946. https://doi.org/10.1007/s11164-013-1246-5
Felipe MBMC, Silva DR, Martinez-Huitle CA, Medeiros SRB, Maciel MAM. 2013. Effectiveness of Croton cajucara Benth on corrosion inhibition of carbon steel in saline medium. Materials and Corrosion. 64(3): 530-534. https://doi.org/10.1002/maco.201206532
Ferraz RPC, Bomfim DS, Carvalho NC, Soares MBP, Silva TB, Machado WJ, Prata APN, Costa EV, Moraes VRS, Nogueira PCL, Bezerra DP. 2013. Cytotoxic effect of leaf essential oil of Lippiagracilis Schauer (Verbenaceae). Phytomedicine. 20: 615 - 621. https://doi.org/10.1016/j.phymed.2013.01.015
Flemming HC, Wingender J. 2010. The biofilm matrix. Nature Reviews Microbiology. 8: 623-633. https://doi.org/10.1038/nrmicro2415
Gambino M, Cappittelli F. 2016. Biofilm responses to oxidative stress. Biofouling. 2: 167-178. https://doi.org/10.1080/08927014.2015.1134515
Gu T. 2012. New understandings of biocorrosion mechanisms and their classifications. Microbial & Biochemical Technology. 4: 4. doi: 10.4172/1948- 5948.1000e107 https://doi.org/10.4172/1948-5948.1000e107
Hellio C, Bremer G, Pons AM, Le Gal BN. 2000. Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France. Applied Microbiology and Biotechnology. 54: 543-549. https://doi.org/10.1007/s002530000413
Hong SH, Hegde M, Kim J, Wang X, Jayaraman A, Wood TK. 2012. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nature Comunications. 3: 613. https://doi.org/10.1038/ncomms1616
Javaherdashti R, Raman RKS, Panter C, Pereloma EV. 2006. Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pures cultures of sulfate reducing bacteria. International Biodeterioration & Biodegradation. 58: 27-35. https://doi.org/10.1016/j.ibiod.2006.04.004
Jin J, Guan Y. 2014. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes. Bioresource Technology. 169: 387-394. https://doi.org/10.1016/j.biortech.2014.06.059
Korenblum E, Goulart FRV, Rodrigues IA, Abreu F, Lins U, Alves PB, Blank AF, Voloni E, Sebastián GV, Alviano DS, Alviano CS, Seldin L. 2013. Antimicrobial action and anticorrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogoncitratus) essential oil and its major component, the citral. ABM Express. 3: 44. https://doi.org/10.1186/2191-0855-3-44
Kumar P, Mittal KL. (Eds). 1999. Handbook of Microemulsion Science and Technology. New York: Marcel Dekker. 864p.
Kunle O. 2003 Antimicrobial activity of various extracts and carvacrol from Lippiamultiflora leaf extract. Phytomedicine. 10: 59. https://doi.org/10.1078/094471103321648674
Langevin D. 1988. Microemulsions. Accounts of Chemical Research.21: 255. https://doi.org/10.1021/ar00151a001
Lambert RJW, Sjandamis PN, Coote PJ, Nychas GJE. 2001. A study of minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology. 91: 453-462. https://doi.org/10.1046/j.1365-2672.2001.01428.x
Lenhart TR, Duncan KE, Beech IB, Sunner JA, Smith W, Boifay V, Biri B, Suflita JM. 2014. Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Biofouling. 7: 823-835. https://doi.org/10.1080/08927014.2014.931379
Li XZ, Hauer B, Rosche B. 2007. Single-species microbial biofilm screening for industrial applications. Applied Microbiology and Biotechnology. 76: 1255-1262. https://doi.org/10.1007/s00253-007-1108-4
Liengen T, Basseguy R, Feron D, Beech I. 2014.Understanding Biocorrosion: Fundamentals and Applications. European Federation of Corrosion Publications: Wood head Publishing. 66: 446p.
Loto CA, Loto RT, Popoola API. 2011. Electrode potential monitoring of effect of plants extracts addition on the electrochemical corrosion behaviour of mild steel reinforcement in concrete. International Journal of Electrochemical Science. 6: 3452-3465.
Lowe KL, Bogan BW, Sullivan WR, Cruz KMH, Lamb BM, Kilbane JJ. 2004. Development of an environmentally benign microbial inhibitor to control internal pipeline corrosion. Eleventh Quarter Report.2: 54.
Macêdo, JAB. 2000. Biofilmes bacterianos, uma preocupação da indústria de farmacêutica. Revista Fármacos & Medicamentos. 2: 19-24.
Melo JO, Bitencourt TA, Fachin AL, Cruz EMO, Jesus HCR, Alves PB, Arrigoni-Blank MF, Franca SC, Beleboni RO, Fernandes RPM, Blank AF, Scher R. 2013. Antidermatophytic and antileishmanial activities of essential oils from Lippiagracilis Schauer genotypes. Acta Tropica. 128: 110-115. https://doi.org/10.1016/j.actatropica.2013.06.024
Muthukrishnan P, Prakash P, Ilayaraja M, Jeyaprabha B, Shankar K. 2015. Effect of acidified Feroniaelephantum leaf extract on the corrosion behavior of mild steel. Metallurgical and Materials Transactions B. 46: 1448-1460. https://doi.org/10.1007/s11663-015-0322-1
NACE -Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solution at Tempera. 2000. Document number: TM-0193.
Nelson DL, Cox MM. 2012. Lehninger Principles of Biochemistry. W.H. Freeman. 6th Edition. 1340p.
Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. 2012. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chemical Society Reviews. 41: 5185-5238. https://doi.org/10.1039/c2cs35116a
Oguzie EE, Oguzie KL, Akalezi CO, Udeze IO, Ogbulie JN, Njoku VO. 2013. Natural products of materials protection: corrosion and microbial growth inhibition using capsicum frutescens biomass extracts. ACS Sustainable Chemistry & Engineering. 1: 214-225. https://doi.org/10.1021/sc300145k
Oliveira AG, Scarpa MV, Chaimovich HJ. 1997. Pharmacy Science. 86: 616. https://doi.org/10.1021/js9602599
Oliveira AG, Scarpa MV, Correa MA, Cera LFR, Formariz TP. 2004. Microemulsãoes: estrutura e aplicações como sistema de liberação de fármacos. Química Nova. 27: 131- 138. https://doi.org/10.1590/S0100-40422004000100023
Paul BK, Moulik SP. 2001. Use and applications of microemulsions. Curr. Sci. 80: 900-2001.
Pascual ME, Slowing K, Carretero E, Sánchez MD, Villar, A. 2001 Lippia: traditional uses, chemistry and pharmacology: a review. Journal of Ethno pharmacology. 76: 201-214. https://doi.org/10.1016/S0378-8741(01)00234-3
Pimenta M, Fernandes LS, Pereira UJ, Garcia LS, Leal SR, Leitão SG, Salimena FRG, Viccini LF, Peixoto PH. 2007. Floração, germinação e estaquia em espécie de Lippia L. (Verbenaceae). Revista Brasileira de Botânica. 2: 211-220. https://doi.org/10.1590/S0100-84042007000200006
Prasad R. 2000. Corrosion. Houston: NACE, 390p.
Raja PB, Sethuraman MG. 2008. Natural products as corrosion inhibitor for metals in corrosive media - A review. Materials Letters. 62: 113-116. https://doi.org/10.1016/j.matlet.2007.04.079
Rocha JC, Cunha JAPG, D'Elia E. 2010. Corrosion inhibition of carbon steel in hydrochloric acid solution by fruit peel aqueous extracts. Corrosion Science. 52: 2341. https://doi.org/10.1016/j.corsci.2010.03.033
Sarikurkcu C, Ozer MS, Eskici M, Tepe B, Can S, Mete E. 2010. Essential oil composition and antioxidant activity of Thymus longicaulis C. Presl subsp. longicaulisvar. longicaulis. Food and Chemical Toxicology. 48: 1801-1805. https://doi.org/10.1016/j.fct.2010.04.009
Sarrazin SLF, Oliveira RB, Barata LES, Mourão RHV. 2012. Chemical composition and antimicrobial activity of the essential oil of Lippiagrandis Schauer (Verbenaceae) from the western Amazon. Food Chemistry. 134: 1474-1478. https://doi.org/10.1016/j.foodchem.2012.03.058
Silva TF, Vollú RE, Jurelevicius D, Alviano DS, Alviano CS, Blank AF, Seldin L. 2013.Does the essential oil of Lippiasidoides Cham. (pepper-rosmarin) affect its endophytic microbial community? BMC Microbiology. 13: 29. https://doi.org/10.1186/1471-2180-13-29
Simões M, Simões LC, Vieira MJ. 2010. A review of current and emergent biofilm control strategies. LWT - Food Science Technology. 43: 573-583. https://doi.org/10.1016/j.lwt.2009.12.008
Stitt M. 2013. Systems-integration of plant metabolism: means, motive and opportunity. Current Opinion in Plant Biology. 16: 381-388. https://doi.org/10.1016/j.pbi.2013.02.012
Sutherland, IW. 2001. The biofilm matrix - an immobilized but dynamicsmicrobial environment. Trends in Microbiology. 5: 222-227. https://doi.org/10.1016/S0966-842X(01)02012-1
Terblanché FC, Kornelius G. 1996. Essential oil constituents of the genus Lippia (Verbenaceae): a literature review. Journal of Essential Oil Research. 5: 471-485. https://doi.org/10.1080/10412905.1996.9700673
Tortora GJ, Funke BR, Case CL. 2012. Microbiologia. São Paulo: Artmed. 10ª ed. 964p.
Umoren SA, Eduok UM, Israel AU, Obot IB, Solomon MM. 2012. Coconut coir dust extract: a novel eco-friendly corrosion inhibitor for Al in HCl solutions. Green Chemistry Letters and Reviews. 5: 303-313. https://doi.org/10.1080/17518253.2011.625980
Van den Dool LH, Kratz PHJ. 1963.Chromatography. Journal of Chromatography A. 11: 463. https://doi.org/10.1016/S0021-9673(01)80947-X
Videla, HA. 2003. Biocorrosão, biofouling e biodegradação de materiais. São Paulo: Editora Edgard Blucher LTDA; 148p.
Videla HA, Herrera LK. 2004. Biocorrosion. In Studies in Surface Science and Catalysis. Elsevier B.V; 151p.
Videla HA, Herrera LK. 2009. Understanding microbial inhibition of corrosion. A comprehensive overview. International Biodeterioration & Biodegradation. 63: 896-900. https://doi.org/10.1016/j.ibiod.2009.02.002
Viuda-Martos M, Mohamady MA, Fernández-López J, ElRazik KAA, Omer EA, Pérez-Alvarez JA, Sendra E. 2011. In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatics plants. Food Control. 22: 1715-1722. https://doi.org/10.1016/j.foodcont.2011.04.003
Viuda-Martos M, El Gendy NGS, Sendra E, Fernández- López J, ElRazik KAA, El-Sayed A, Pérez-Alvarez JA. 2010. Chemical composition and antioxidant and anti-listeria activities of essential oils obtained from some Egyptian plants. Journal of Agricutural and Food Chemistry. 58: 9063- 9070. https://doi.org/10.1021/jf101620c
Zein S, Awada S, Al-Hajje A, Rachidi S, Salameh P, Kanaan H. 2012. Variation of thymol, carvacrol and thymoquinone production from wild and cultivated Origanumsyriacumof South Lebanon. Journal of Medicinal Plants Research. 6: 1692-1696. https://doi.org/10.5897/JMPR11.1474
Zhang P, Xu D, Li Y, Yang K, Gu T. 2015. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry. 101: 14-21. https://doi.org/10.1016/j.bioelechem.2014.06.010
Winsor PA. 1948. Hydrotropy, solubilisation and related emulsification processes. Transactions of the Faraday Society. 44: 376-98. https://doi.org/10.1039/tf9484400376
Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. 2013. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nature Protocols. 8: 1535-1550. https://doi.org/10.1038/nprot.2013.087