Decoding Rainfall Diversity: A Long-Term GIS Assessment of the Chikkamagaluru Region
DOI:
https://doi.org/10.12974/2311-8741.2025.13.07Keywords:
Rainfall variability, Kriging, Chikkamagaluru, Trend analysis, Mann–Kendall, Sen’s slope, Western ghats, GISAbstract
This study analyses long-term rainfall variability across Chikkamagaluru, Mudigere and Belur taluks using a 47-year continuous dataset (1977–2024). Spatial interpolation (Ordinary Kriging, 1 km × 1 km resolution) and temporal trend diagnostics (Mann–Kendall, Sen’s slope) were used to quantify seasonal patterns and windward–leeward gradients. Mean annual rainfall across the region is 1769 mm, with monsoon rainfall contributing 80–86% of yearly totals. Windward stations such as Kottigehara and Hosakere receive 3–4 times more rainfall (up to 4170 mm) than leeward stations such as Kalasapura (~680 mm). Trend analysis indicates weak but notable seasonal trends: monsoon rainfall shows non-significant decreasing tendencies at most leeward stations, while pre-monsoon rainfall shows slight increasing trends (Sen’s slope +1.8 to +3.2 mm/year). Spatial rainfall maps and trends align strongly with Western Ghats orography and established monsoon climatology. These findings enhance hydro-climatic understanding and provide actionable insights for watershed planning, agriculture, and hazard mitigation.
References
Konda, G., Chowdary, J. S., Gnanaseelan, C., Vissa, N. K., & Parekh, A. (2024). Temporal and spatial aggregation of rainfall extremes over India under anthropogenic warming. Scientific Reports, 14(1), 12538. https://doi.org/10.1038/s41598-024-63417-w
Markonis, Y., Vargas Godoy, M.R., Pradhan, R.K. et al. Spatial partitioning of terrestrial precipitation reveals varying dataset agreement across different environments. Commun Earth Environ 5, 217 (2024). https://doi.org/10.1038/s43247-024-01377-9
Vengala, J. et al. (2022). Flood Damages Assessment Using Remote Sensing and GIS: A Case Study of 2018 Kodagu Floods. In: Rao, C.M., Patra, K.C., Jhajharia, D., Kumari, S. (eds) Advanced Modelling and Innovations in Water Resources Engineering. Lecture Notes in Civil Engineering, vol 176. Springer, Singapore. https://doi.org/10.1007/978-981-16-4629-4_32
Bankar, A., Venkatesan, P., V, Rakesh, Chopra, G., & Sujith, R. I. (2025). Evaluation of high-resolution gridded precipitation datasets against a dense rain gauge network during the Indian summer monsoon.
Li, C., Liu, J., Du, F. et al. Increasing certainty in projected local extreme precipitation change. Nat Commun 16, 850 (2025). https://doi.org/10.1038/s41467-025-56235-9
Suman, M., & Maity, R. (2020). Southward shift of precipitation extremes over south Asia: Evidences from CORDEX data. Scientific Reports, 10(1), 6452. https://doi.org/10.1038/s41598-020-63571-x
Sreekeshava, K.S., Kolathayar, S., Vinod Chandra Menon, N., Bhargavi.C (2024). Civil Engineering for Multi-hazard Risk Reduction-An Introduction. In: Sreekeshava, K.S., Kolathayar, S., Vinod Chandra Menon, N. (eds) Civil Engineering for Multi-Hazard Risk Reduction. IACESD 2023. Lecture Notes in Civil Engineering, vol 457. Springer, Singapore. https://doi.org/10.1007/978-981-99-9610-0
Dash, S., Sreya, T.U. & Maity, R. Changes in the spatial variability of extreme precipitation characteristics across Peninsular India. Discov Geosci 2, 17 (2024). https://doi.org/10.1007/s44288-024-00019-z
Modon Valappil, N.K., de Oliveira Júnior, J.F., Mendes, D. et al. Statistical trend characteristics of rainfall over Kerala, India evaluated through analysing modern era retrospective analysis for research and applications (MERRA-2) reanalysis data. Bull. of Atmos. Sci.& Technol. 6, 11 (2025). https://doi.org/10.1007/s42865-025-00091-4
Jana, S., Gogoi, M. M., & Babu, S. S. (2024). Change in precipitation pattern over South Asia in response to the trends in regional warming and free-tropospheric aerosol loading. Scientific Reports, 14(1), 14528. https://doi.org/10.1038/s41598-024-64842-7
Bhattacharyya, S., & Chakraborty, A. (2025). Possible mechanisms behind dominant modes of seasonal cycle of rainfall over India. Journal of Climate, 38(5), 1271-1288. https://doi.org/10.1175/JCLI-D-24-0300.1
Hırca, T., Eryılmaz Türkkan, G. Assessment of Different Methods for Estimation of Missing Rainfall Data. Water Resour Manage 38, 5945-5972 (2024). https://doi.org/10.1007/s11269-024-03936-3
Bojago, E., Tessema, A., & Ngare, I. (2024). GIS-based spatio-temporal analysis of rainfall trends under climate change in different agro-ecological zones of Wolaita zone, south Ethiopia. Heliyon, 10(13), e33235. https://doi.org/10.1016/j.heliyon.2024.e33235
Luo, L.-X., Sun, Z.-Y., & Tan, Z.-H. (2024). Climate seasonality of tropical evergreen forest region. Water, 16(5), 749. https://doi.org/10.3390/w16050749
Rao, K. R., Sreekeshava, K. S., Dharek, M. S., Sunagar, P. C., & Ganesh, C. R. (2020). Spatial variation of climate change issues using remote sensing technique. IOP Conference Series. Materials Science and Engineering, 814(1), 012042. https://doi.org/10.1088/1757-899X/814/1/012042
Son, JH., Franzke, C.L.E., Kim, HK. et al. Unraveling the role of the western North Pacific circulation anomaly in modulating Indian summer monsoon rainfall variability beyond ENSO. Sci Rep 14, 22236 (2024). https://doi.org/10.1038/s41598-024-73269-z
Radhakrishna, B., Saikranthi, K., & Rao, T. N. (2024). Rain microphysics associated with continental, oceanic, and orographic regions of India during wet and dry spells. Journal of Hydrometeorology, 25(11), 1713-1728. https://doi.org/10.1175/JHM-D-23-0215.1
Vidya, & Jeganathan, A. (2024). Agro-climatic zone-wise drought hazards in Karnataka under historical and future climate scenarios. Mausam, 75(2), 583-596. https://doi.org/10.54302/mausam.v75i2.6323
Murali Krishna, U. V., Das, S. K., Sulochana, E. G., Bhowmik, U., Deshpande, S. M., & Pandithurai, G. (2021). Statistical characteristics of raindrop size distribution over the Western Ghats of India: wet versus dry spells of the Indian summer monsoon. Atmospheric Chemistry and Physics, 21(6), 4741-4757. https://doi.org/10.5194/acp-21-4741-2021