Mineralogy, Trace Elements, and Rare Earth Element Composition of Sediments in an Amazonian Whitewater River: The Acre River
DOI:
https://doi.org/10.12974/2311-8741.2025.13.06Keywords:
Acre river, Amazon basin, Hydrogeochemistry, Rare earth elements, Sedimentology, WhitewaterAbstract
This study characterizes the mineralogical and geochemical composition of suspended (SS) and riverbed sediments (BS) from the Acre River, a whitewater tributary in Southwestern Amazonia. Four SS and four BS samples collected during the dry season were homogenized into composite samples and analyzed by different analytical techniques (ICP-MS, ICP OES, XRD, and FTIR). The results showed that quartz (up to 75 %) and kaolinite (up to 38 %) were the dominant minerals, together with feldspars and TiO2. Rare earth elements (REEs) were present at low to moderate concentrations (0.11-52 µg g-1), with Ce and La being the most abundant. Trace elements such as V, Ni, Ga, Rb, and Cs showed enrichment relative to upper continental crust. Although the single-season sampling limits temporal interpretation, comparison with published datasets from the Purus and Solimões basins suggests that both natural weathering and local land-use pressures influence sediment composition. These results provide new geochemical data for a poorly studied Amazonian tributary and contribute to the broader understanding of sediment provenance and hydrogeochemical processes in whitewater rivers.
References
Guayasamin JM, Ribas CC, Carnaval AC, Carrillo JD, Hoorn C, Lohmann LG, et al. Evolution of Amazonian biodiversity: A review. Acta Amazon. 2024; 54. https://doi.org/10.1590/1809-4392202103601
Park E, Latrubesse EM. Surface water types and sediment distribution patterns at the confluence of mega rivers: The Solimões Amazon and Negro Rivers junction. Water Resour Res. 2015; 51: p. 6197-213. https://doi.org/10.1002/2014WR016757
Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences. 2011; 8: p. 1415-40. https://doi.org/10.5194/bg-8-1415-2011
Lucas Y, Montes CR, Mounier S, Loustau-Cazalet M, Ishida D, Achard R, et al. Biogeochemistry of an amazonian podzol-ferralsol soil system with white kaolin. 2012. https://doi.org/10.5194/bgd-9-2233-2012
Bardy M, Derenne S, Allard T, Benedetti MF, Fritsch E. Podzolisation and exportation of organic matter in black waters of the Rio Negro (upper Amazon basin, Brazil). Biogeochemistry. 2011; 106: p. 71-88. https://doi.org/10.1007/s10533-010-9564-9
Allard T, Ponthieu M, Weber T, Filizola N, Guyot JL, Benedetti M. Nature et propriétés de solides en suspension du Bassin amazonien. Bulletin de la Societe Geologique de France. 2002; 173: p. 67-75. https://doi.org/10.2113/173.1.67
Leenheer JA, Santos U de M. Considerações sobre os processos de sedimentação na água preta ácida do rio Negro (Amazônia Central). Acta Amazon. 1980; 10: p. 343-57. https://doi.org/10.1590/1809-43921980102343
Queiroz MMA, Horbe AMC, Seyler P, Moura CAV. Hidroquímica do rio Solimões na região entre Manacapuru e Alvarães: Amazonas - Brasil. Acta Amazon. 2009; 39: p. 943-52. https://doi.org/10.1590/S0044-59672009000400022
Ríos-Villamizar EA, Adeney JM, Piedade MTF, Junk WJ. New insights on the classification of major Amazonian river water types. Sustain Water Resour Manag. 2020; 6: 83. https://doi.org/10.1007/s40899-020-00440-5
Barton C, Karathanasis A. Clay Minerals. In: Dekker M, editor. Encyclopedia of Soil Science. 2002. p. 187-92.
Martinelli LA, Victoria RL, Dematte JLI, Richey JE, Devol AH. Chemical and mineralogical composition of Amazon River floodplain sediments, Brazil. Applied Geochemistry. 1993; 8: p. 391-402. https://doi.org/10.1016/0883-2927(93)90007-4
Barthelmy D. Mineralogy Database. 2014. Available from https: //webmineral.com/ [cited 2025 Oct 21]
Gerard M, Seyler P, Benedetti MF, Alves VP, Boaventura GR, Sondag F. Rare earth elements in the Amazon basin. Hydrol Process. 2003; 17: 1379-92. https://doi.org/10.1002/hyp.1290
Guyot JL, Jouanneau JM, Soares L, Boaventura GR, Maillet N, Lagane C. Clay mineral composition of river sediments in the Amazon Basin. Catena (Amst). 2007; 71: p. 340-56. https://doi.org/10.1016/j.catena.2007.02.002
Wysocka I. Determination of rare earth elements concentrations in natural waters - A review of ICP-MS measurement approaches. Talanta. 2021; 221: p. 121636. https://doi.org/10.1016/j.talanta.2020.121636
Pinto FG, Junior RE, Saint’Pierre TD. Sample Preparation for Determination of Rare Earth Elements in Geological Samples by ICP-MS: A Critical Review. Anal Lett. 2012; 45: p. 1537-56. https://doi.org/10.1080/00032719.2012.677778
Duarte AF, Gioda A. Inorganic composition of suspended sediments in the Acre River, Amazon Basin, Brazil. Latin American Journal of Sedimentology and Basin Analysis. 2014; 21: p. 3-15.
Doebelin N, Kleeberg R. Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr. 2015; 48: p. 1573-80. https://doi.org/10.1107/S1600576715014685
Hu Z, Gao S. Upper crustal abundances of trace elements: A revision and update. Chem Geol. 2008; 253: p. 205-21. https://doi.org/10.1016/j.chemgeo.2008.05.010
Chen J, Gaillardet J, Bouchez J, Louvat P, Wang Y. Anthropophile elements in river sediments: Overview from the Seine River, France. Geochemistry, Geophysics, Geosystems. 2014; 15: p. 4526-46. https://doi.org/10.1002/2014GC005516
Ramos SJ, Dinali GS, Oliveira C, Martins GC, Moreira CG, Siqueira JO, et al. Rare Earth Elements in the Soil Environment. Curr Pollut Rep. 2016; 2: p. 28-50. https://doi.org/10.1007/s40726-016-0026-4
Ramasamy V, Rajkumar P, Ponnusamy V. Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies. Indian Journal of Physics. 2009; 83: p. 1295-308. https://doi.org/10.1007/s12648-009-0110-3
Murugesan S, Ramasamy V, Mullainathan S. Characterisation of minerals and relative distribution of quartz in Cauvery river sediments from Tamilnadu, India - A FTIR Study. Bulletin of Pure and Applied Sciences. 2004. https: //www.researchgate.net/publication/318310805
Moreira-Turcq P, Seyler P, Guyot J-L. Characterization of suspended particulates and dissolved adsorbed organic matter in Amazon river. 2014. https: //www.researchgate.net/publication/235451859
Bergmann J. Modern crystallographic algorithms and data structures (a very personal approach). 2021. Available from https: //www.iucr.org/resources/commissions/computing/newsletters/1/modern-crystallographic-algorithms [cited 2025 Oct 17]
United States Geological Survey. Mineral commodity summaries 2025. 2025. Available from.
Brioschi L, Steinmann M, Lucot E, Pierret MC, Stille P, Prunier J, et al. Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant Soil. 2013; 366: p. 143-63. https://doi.org/10.1007/s11104-012-1407-0
Silva FBV, Nascimento CWA, Alvarez AM, Araújo PRM. Inputs of rare earth elements in Brazilian agricultural soils via P-containing fertilizers and soil correctives. J Environ Manage. 2019; 232: p. 90-6. https://doi.org/10.1016/j.jenvman.2018.11.031
Edahbi M, Plante B, Benzaazoua M, Ward M, Pelletier M. Mobility of rare earth elements in mine drainage: Influence of iron oxides, carbonates, and phosphates. Chemosphere. 2018; 199: p. 647-54. https://doi.org/10.1016/j.chemosphere.2018.02.054
Kanazawa Y, Kamitani M. Rare earth minerals and resources in the world. J Alloys Compd. 2006; 408-412: p. 1339-43. https://doi.org/10.1016/j.jallcom.2005.04.033
Emsbo P, McLaughlin PI, Breit GN, du Bray EA, Koenig AE. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Research. 2015; 27: p. 776-85. https://doi.org/10.1016/j.gr.2014.10.008
Forsyth K, Dia A, Marques R, Prudêncio MI, Obregón-Castro C, Diamantino C, et al. Relationship between the distribution of rare earth elements in soil pools with plant uptake: a sequential extraction study. Plant Soil. 2024. https://doi.org/10.1007/s11104-024-07135-2
Balogh-Brunstad Z, Keller CK, Bormann BT, O’Brien R, Wang D, Hawley G. Chemical weathering and chemical denudation dynamics through ecosystem development and disturbance. Global Biogeochem Cycles. 2008; 22. https://doi.org/10.1029/2007GB002957
Bouchez J, Moquet J, Espinoza JC, Martinez J, Guyot J, Lagane C, et al. River Mixing in the Amazon as a Driver of Concentration‐Discharge Relationships. Water Resour Res. 2017; 53: p. 8660-85. https://doi.org/10.1002/2017WR020591
Vital H, Stattegger K, Garbe-Schoenberg C-D. Composition and trace-element geochemistry of detrital clay and heavy-mineral suites of the lowermost Amazon River; a provenance study. Journal of Sedimentary Research. 1999; 69: p. 563-75. https://doi.org/10.2110/jsr.69.563
Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, C. Bustamante MM, et al. The Amazon basin in transition. Nature. 2012; 481: p. 321-8. https://doi.org/10.1038/nature10717
Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas JM, Veiga ABG Da, Spilki FR, et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. An Acad Bras Cienc. 2020; 92. https://doi.org/10.1590/0001-3765202020191375