Spatial Modeling of Flood-Prone Areas Through Multi-Criteria Analysis Applied to a Brazilian Municipality
DOI:
https://doi.org/10.12974/2311-8741.2025.13.05Keywords:
Multi-criteria analysis, Environmental susceptibility, Geomorphological variables, Socioeconomic variables, Territorial planning, Urban floodingAbstract
This study applied a spatial multi-criteria analysis (MCA) integrated with Geographic Information Systems (GIS) to identify flood risk areas in Sorocaba, Brazil. The variables—slope, elevation, flow accumulation, soil susceptibility, and land use and land cover (LULC)—were standardized, reclassified into vulnerability levels, and integrated using the categories very low, low, moderate, and high, resulting in a flood risk map. Additionally, a spatial overlap analysis between LULC classes was performed to identify occupation patterns in risk areas. The areas classified as high and moderate risk are concentrated in low-altitude regions, characterized by high environmental susceptibility and intense anthropogenic occupation, especially along the Sorocaba River and its tributaries. In contrast, very low-risk zones are located in forested or silvicultural areas, associated with higher altitudes and greater infiltration capacity. The spatial overlap between risk and land use revealed that non-vegetated surfaces (38.0%) and pasture/agriculture areas (58.6%) predominate in the highest-risk zones, indicating low infiltration and increased surface runoff. These results demonstrate that flood vulnerability arises from the interaction between geomorphological and anthropogenic factors, reinforcing that land cover changes and environmental degradation intensify hydrological events. The proposed model proved efficient, transparent, and replicable, providing technical support for territorial planning, disaster risk management, and the formulation of preventive public policies.
References
IPCC. Synthesis report of the IPCC Sixth Assessment Report (AR6) Summary for Policymakers [Internet]. IPCC. Intergovernmental Panel on Climate Change; 2023 [cited 2025 Aug 04]: Available from: https: //www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf
UNDRR. Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future [Internet]. UNDRR. United Nations Office for Disaster Risk Reduction; 2022 [cited 2025 Oct 02]: Available from: https: //www.undrr.org/gar/gar2022-our-world-risk-gar
World Bank. The Hidden Cost of Floods: How Floods Damage Economies and Lives [Internet]. World Bank; 2021 [cited 2025 Oct 14]: Available from: https: //openknowledge.worldbank.org/handle/10986/36327
Toniolo BP, Silva DCC, Ventura KS, Lourenço RW. Identificação de áreas suscetíveis a inundação com o auxílio de geotecnologias na Unidade de Negócio Oeste - Sabesp. Revista DAE. 2022 Mar; 70(235): 167-179. https://doi.org/10.36659/dae.2022.028
Khan SI, Hong Y, Wang J, Yilmaz KK, Gourley JJ, Adler RF, et al. Satellite Remote Sensing and Hydrologic Modeling for Flood Inundation Mapping in Lake Victoria Basin: Implications for Hydrologic Prediction in Ungauged Basins. IEEE Transactions on Geoscience and Remote Sensing. 2011 Jan; 49(1): 85-95. https://doi.org/10.1109/TGRS.2010.2057513
Jonkman S, Dawson R. Issues and Challenges in Flood Risk Management—Editorial for the Special Issue on Flood Risk Management. Water. 2012 Oct 12; 4(4): 785-92. https://doi.org/10.3390/w4040785
Liu Y, Liu L, Sun H, Chen B, Ma X, Ning Y, et al. Flood Risk Assessment Combining Machine Learning with Multi-criteria Decision Analysis in Jiangxi Province, China. International Journal of Disaster Risk Science. 2025 Oct 13; 16: 858-869. https://doi.org/10.1007/s13753-025-00669-8
Wang Y, Hong H, Chen W, Li S, Pamučar D, Gigović L, et al. A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sensing. 2018 Dec 30; 11(1): 62. https://doi.org/10.3390/rs11010062
Pimenta L, Duarte L, Teodoro AC, Beltrão N, Gomes D, Oliveira R. GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil. Land. 2025 Jul 27; 14(8): 1543. https://doi.org/10.3390/land14081543
Pedro PS, Eusébio R, Susana P, Mónica S. A flood susceptibility model at the national scale based on multicriteria analysis. Science of The Total Environment. 2019 Jun 1; 667: 325-37. https://doi.org/10.1016/j.scitotenv.2019.02.328
Dias MH, Nássila RG, Camila NA. Mapeamento da suscetibilidade a inundações em áreas urbanas: estudo de caso no município de Marabá, Sudeste do estado do Pará, Região Norte do Brasil. 2021 May 28; 12(6): 347-59. https://doi.org/10.6008/CBPC2179-6858.2021.006.0029
Silva DCC, Oliveira RA, Simonetti VC, Toniolo BP, Sales JCA, Lourenço RW. Creation of an environmental sustainability index for water resources applied to watersheds. Environment, Development & Sustainability. 2023; 25(10): 11285. https://doi.org/10.1007/s10668-022-02527-9
Santos AP, Arenas LADO, Silva DCC, Lourenço RW. Análisis bibliométrico del uso de herramientas SIG en escenarios de deslizamientos en Brasil. Revista Geográfica de América Central. 2025; 74(1): 415-441. https://doi.org/10.15359/rgac.74-1.16
N-Habitat. Evaluation Report: Accelerating Climate Action through the Promotion of Urban Low Emission Development Strategies (Urban-LEDS II) [Internet]. UN-Habitat; 2021 [cited 2025 Oct 14]. Available from: https: //unhabitat.org/sites/default/files/2021/03/evaluation_report_urban_leds_ii.pdf
Plano Diretor de Sorocaba - SP [Internet]. Câmara Municipal de Sorocaba. 2014 [cited 2025 Aug 28]: Available from: https: //leismunicipais.com.br/a1/sp/s/sorocaba/lei-ordinaria/2014/1102/11022/lei-ordinaria-n-11022-2014-dispoe-sobre-a-revisao-do-plano-diretor-de-desenvolvimento-fisico-territorial-do-municipio-de-sorocaba-e-da-outras-providencias
Think Hazard - Badghis [Internet]. Thinkhazard.org. 2025 [cited 2025 Nov 1]. Available from: https: //thinkhazard.org/en/report/273-brazil-sao-paulo-sorocaba/Flood
Temitope SO, Ribeiro MP, Chen D, Masoud Babadi Ataabadi, Saba Hosseini Tabesh, Abiodun Esau Daomi. Applying Machine Learning Algorithms for Spatial Modeling of Flood Susceptibility Prediction over São Paulo Sub-Region. Land. 2025 May 2; 14(5): 985-5. https://doi.org/10.3390/land14050985
Simonetti VC, Silva DCC, Rosa AH. Correlação espacial compartimentada dos padrões de drenagem com características morfométricas da bacia hidrográfica do rio Pirajibu-Mirim. Revista Brasileira de Geomorfologia. 2022 Jan 13; 23(1): 2037. https://doi.org/10.20502/rbg.v23i1.2037
Ouma Y, Tateishi R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water. 2014 May 30; 6(6): 1515-45. https://doi.org/10.3390/w6061515
Rincón D, Khan U, Armenakis C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences. 2018 Jul 27; 8(8): 275. https://doi.org/10.3390/geosciences8080275
Popa MC, Peptenatu D, Drăghici CC, Diaconu DC. Flood Hazard Mapping Using the Flood and Flash-Flood Potential Index in the Buzău River Catchment, Romania. Water. 2019 Oct 12; 11(10): 2116. https://doi.org/10.3390/w11102116
Rossi M, Aurélio NM, Mitsue KM, editors. Atlas de Suscetibilidades dos Solos do Estado de São Paulo [Internet]. Instituto de Pesquisas Ambientais; 2022 [cited 2025 Sep 11]. Available from: https: //smastr16.blob.core.windows.net/2001/sites/261/2022/10/atlas-de-suscetibilidades-dos-solos-do-estado-de-sao-paulo.pdf
Mapbiomas Brasil. Coleção 9: Relatório Técnico—Cobertura e Uso da Terra no Brasil (1985-2023) [Internet]. 2024. Available from: https: //brasil.mapbiomas.org/
Petros M, Puffy S, Martin MM. Effects of Rainfall Intensity and Slope on Infiltration Rate, Soil Losses, Runoff and Nitrogen Leaching from Different Nitrogen Sources with a Rainfall Simulator. Sustainability. 2024 May 24; 16(11): 4477-7. https://doi.org/10.3390/su16114477
Cao X, Cheng Y, Jiao J, Jian J, Bai L, Li J, et al. Impact of Land Use/Cover Changes on Soil Erosion by Wind and Water from 2000 to 2018 in the Qaidam Basin. Land. 2023 Sep 30; 12(10): 1866-6. https://doi.org/10.3390/land12101866
Arantes LT, Arantes BHT, Sacramento BH, Costa HF, Oliveira RA, Simonetti VC, Silva DCC, Lourenço RW. Application of spatial environmental indicators in the assessment of degradation potential of water resources in water basins. Environmental Monitoring and Assessment. 2023 Jul 11; 195(8): 931. https://doi.org/10.1007/s10661-023-11499-w
Korah PI, López FMJ. (2015). Mapping Flood Vulnerable Areas in Quetzaltenango, Guatemala using GIS. Journal of Environment and Earth Science. 2015; 5(6): 132-143.
Simelane MPC, Peptenatu D, Drăghici CC, Diaconu DC. Flood Hazard Mapping Using the Flood and Flash-Flood Potential Index in the Buzău River Catchment, Romania. Water. 2019 Oct 12; 11(10): 2116. https://doi.org/10.3390/w11102116
Kalantari Z, Sörensen J. Link between Land Use and Flood Risk Assessment in Urban Areas. Proceedings. 2020 May 19; 30(1): 62. https://doi.org/10.3390/proceedings2019030062
Banjara M, Bhusal A, Ghimire AB, Kalra A. Impact of Land Use and Land Cover Change on Hydrological Processes in Urban Watersheds: Analysis and Forecasting for Flood Risk Management. Geosciences. 2024 Feb 1; 14(2): 40. https://doi.org/10.3390/geosciences14020040
Rizzo FA, Sacramento BH, Tonello PS, Silva DCC. Proposta metodológica de identificação de áreas prioritárias para recuperação da bacia hidrográfica do córrego Pequiá (MA). Revista Tecnologia e Sociedade. 2023 Sep 13; 19(57): 33-54. https://doi.org/10.3895/rts.v19n57.15589
Nery LM, Perucello JM, Cunha-Lignon, M, Machado LP, Silva DCC. Retrato ambiental do Complexo Estuarino Lagunar Cananeia-Iguape: a influência do canal Valo Grande. Boletim Paranaense de Geociências. 2024 Jul 5; 82(1): 1-20. https://doi.org/10.5380/geo.v82i1.91877
Oliveira RA, Galvão JMF, Simonetti VC, Martins ACG, Silva DCC. Levantamento dos métodos de elaboração de corredores ecológicos utilizando SIG: uma revisão bibliográfica sistemática. Novos Cadernos NAEA. 2023 May 24; 26(2): 325-346. https://doi.org/10.18542/ncn.v26i2.12821
Crichton D. The risk triangle. Natural disaster management. 1999; 102(3): 102-103.