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Abstract: Land subsidence due to groundwater over-exploitation is a serious problem worldwide. Acquiring total 
pumping volumes to assess the stresses imposed that lead to subsidence is often difficult to quantify because 
groundwater extraction is often an unregulated water source. Consequently, pumping volumes represent a critical step 
for water resource managers to develop a strategic plan for mitigating land subsidence. In this investigation, we develop 
a time-dependent spatial regression (TSR) model to estimate monthly pumping volume over a ten-year period based on 
electricity consumption data. The estimated pumped volume is simplified as the spatial function of the electricity 
consumption and the electric power used by the water pump. Results show that the TSR approach can reduce the errors 
by 38% over linear regression models. The TSR model is applied to the Choshui alluvial fan in west-central Taiwan, 
where hundreds of thousands of unregulated pumping wells exist. The results show that groundwater peak extraction 
across the region occurs from January to May. Monthly pumping volume, and rainfall information are available to provide 
a better understanding of seasonal patterns and long-term changes of subsidence. Thus, the temporal regional 
subsidence patterns are found to respond to variations in pumping volume and rainfall.  
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INTRODUCTION 

Land subsidence caused by groundwater 
overexploitation is a serious global problem (Higgins, 
2016). Subsidence areas identified revealed that 
subsidence has preferentially occurred in alluvial 
basins or coastal plains where urban or agricultural 
areas (Herrera-García et al., 2021). Acquiring total 
pumping volumes to assess the stresses imposed that 
lead to subsidence is often difficult to quantify because 
groundwater extraction is often an unregulated water 
source. The accuracy for the estimation of the quantity 
of groundwater withdrawal significantly influences 
regional groundwater resource management (Shao et 
al., 2014) and the amount of land subsidence that 
occurs from the lowering of the water levels. Tsanis & 
Apostolaki (2009) presented an estimation of the 
annual groundwater withdrawal rate based on a water 
balance approach using surface and groundwater 
hydrological components. Water budget components 
and groundwater levels made it possible to understand 
large-scale regional groundwater systems (Zhou & Li, 
2011; Konikow, & Neuzil, 2007). Rodell et al., (2009) 
used terrestrial water storage-change observations 
from the GRACE satellite and simulated soil-water 
variations to estimate groundwater withdrawal.  

Electric power consumption records from pumping 
wells is another feasible means of providing an 
estimate of groundwater usage (Hurr& Litke 1989). 
Total monthly pumped volume can be estimated on the  
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basis of electric power consumption. However, data for 
electric power consumption records is required for 
every well in order to use this approach. These data 
must include, at a minimum, well location, power 
consumption records and pump power requirements. 
Many factors can affect spatio-temporal pumping 
volume estimation, including well design, pump power, 
and hydraulic conductivity (Chu et al., 2020). Following 
an empirical formulation, regression coefficients are 
quantified on the basis of well design, pump power, 
and hydraulic conductivity and then applied to the 
Choshui River alluvial fan in west-central Taiwan. The 
complexity of this systems makes the process of 
acquiring an accurate calibration extremely challenging 
due to the various pump designs and large 
hydrogeological data requirements for model 
development. The time-dependent spatial regression 
(TSR) method can be used in this investigation to 
model the spatial distribution of pumping volumes 
based on the spatial distribution of electric-power 
consumption and electric power requirements of the 
water pumps. Each time step, the TSR explicitly 
considers spatially-dependent models to overcome the 
spatial variability of data mapping (Ali et al., 2020). In 
addition, the regression parameter which depends on 
well characteristics e.g. well depth, well diameter, and 
aquifer hydraulic conductivity at site locations, is the 
function of a spatial location. Thus, applying TSR for 
modeling will provide a more robust goodness of fit to 
reduce spatial uncertainty. 

The aim of the study is to (1) estimate the 
spatio-temporal pattern of pumping volume for each 
well, and determine areal and total volume of pumping, 
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(2) simplify the model calibration process, and (3) 
provide understanding about the temporal relation 
between pumping, rainfall and land subsidence. This 
study applies the TSR approach to estimates total 
groundwater pumpage in the study area. The 
estimation of the spatiotemporal distribution of 
groundwater pumping volume is applied using electric 
power consumption and pump power data. After 
acquiring the groundwater pumping volume, the 
temporal analysis of the rainfall, and groundwater 
pumpage are used to explore the temporal patterns of 
land subsidence.  

METHOD 

The extracted volume of groundwater ( ! ) is 
estimated from the flow rate (!) and operating time (!). 
Operating time is estimated based on Energy = power 
× time, where electricity consumption (!) and electric 
power (!) required by the water pump are used to 
estimate the pumped volume. The pumped volume can 
be estimated based on electric consumption, pump 
power, power efficiency and flow rate.  

! = ! ∗ ! = ! ∗ !/(!!!),      (1) 

where ! is the extracted volume of pumping, ! is the 
volumetric pumping rate (Q in units of volume/time), 
and !  is the electricity consumption. Power 
efficiency  !!  is assumed is assumed to be constant 
(.98) for all pumping wells in this study. In the original 
development of this model (Chu et al., 2020), the pump 
efficiency expressed in Eq. 1 is derived from an 
empirical relation developed from field conditions that 
include the pipe diameter, the pump power, well 
characteristics, aquifer hydraulic conductivity, and 
electricity consumption. Thus, Eq. 1 is applied for each 
individual well that is monitored in this investigation. 
The details of these parameters and their application 
are discussed more fully in Chu et al., 2020. 

The estimated pumped volume is simplified as a 
regression function of the electricity consumption (!) 
and electric power (!) of water pump. 

! = !(!,!),        (2) 

Furthermore, a regression expression identifies the 
relation between pumping volume and electricity 
consumption. Equation (2) is used to estimate the total 
pumped volume at observation i at time t, which can be 
expressed as: 

!!,! = !!!!,!+!!!!+!! + !!,      (3) 

where !!  is the intercept, and !!  and !!  are the 
slope of the linear regression parameters, and !! is the 
residual of the regression model.  

A TSR model that explains the regional variation is 
the specification combining and modeling spatial 
relationships each time step (Brunsdon et al., 1998; 
Chu et al., 2021). In each time step, Equation (4) is 
further extended to allow for a spatially varying function 
for estimating pumped volume at time t as: 

!!,! = !! !! , !! !!,!+!!(!! , !!)!!+!! !! , !! + !!,     (4) 

where !! !! , !!  and !! !! , !!   varies with the spatial 
coordinates (!! , !!) at observation i and is the slope of 
the spatial regression parameters. !! !! , !!  is the 
intercept at observation i of the spatial regression 
parameters in the system. 

The estimated parameter matrix ! !! , !!  is 
derived from:  

! !! , !! = [!!W !! , !! !]!!!!W !! , !! !,     (5) 

where ! !! , !! = !! !! , !! ,!! !! , !!
!
;  

! = !!,… ,!! !;  ! =
1 !!,! !!
⋮ ⋮ ⋮
1 !!,! !!

 ; W !! , !!  is a 

spatial weight matrix, which is formulated from the 
Gaussian and Euclidean distance functions. The 
Gaussian decay-based function commonly used as a 
kernel is defined as !! !!"/!

!
, where h is the 

non-negative bandwidth. The parameter !!"  is the 
distance between the observed points i and j in the 
space domain, which is defined as !!"  = 

!! − !!
!
+ !! − !!

!
. Based on the monthly 

time-varying electricity consumption and electric power, 
the TSR model can then by applied to estimate 
pumping volume.  

The model was used to estimate (1) monthly 
pumping volume within the overall study area for each 
well based on Eq 3 and 4; (2) areal pumping volume 
calculated from a 200 m grided area was aggregated 
using the average function; and (3) overall monthly 
average pumping volume (a time series) in the study 
area was provided for further temporal analysis of 
rainfall and land subsidence. 

STUDY AREA AND MATERIAL  

The study area lies within the Choshui River alluvial 
fan, which encompasses an area of 1800 km2 in 
Changhua and Yunlin Counties (Figure 1). The study 
area in the mid-fan area includes the townships of 
Huwei, Tuku and Yuanchang in Yunlin and covers an 
area of approximately 190  km2 and encompasses the 
area of greatest land subsidence in Taiwan. The 
Taiwan High Speed Rail line is constructed through the 
subsidence area. Chinghua county to the north is 



Spatio-Temporal Pumping Volume Estimation from Electricity Journal of Environmental Science and Engineering Technology, 2023 Vol. 11   63 

separated from Yunlin county to the south by the 
Choshui River, which bisects the alluvial fan and flows 
from east to west. The western boundary is 
represented by the South China Sea and the eastern 
boundary is represented by the headwaters of the 
Choshui River, which lie about 100 meter above sea 
level. The bedrock in the upper (eastern) watershed of 
Choshui River is composed of slate, metamorphic 
quartzite, shale, sandstone, and mudstone, which 
creates sediments of the Choshui River alluvial fan (Liu 
et al., 2004). Excessive exploitation of groundwater in 
Changhua and Yunlin counties has resulted in land 
subsidence and is creating a potential hazard for 
infrastructures including the high-speed rail that 
extends from the northeast to the southern part of the 
study area (Ali et al., 2020). 

The unconsolidated fan deposits consist of four 
aquifers that are composed of gravel and coarse sand 
deposits and separated by three finer grained (but 
locally discontinuous) confining units composed mainly 
of silts and clays. These aquifers are thickest in the 
east and become thinner toward the coast in the west 
where the aquitards tend to dominate. The aquitards 

are most prevalent in the distal-fan and mid-fan areas 
and gradually diminish in thickness toward the east. 
The proximal-fan represents the major recharge area 
of the aquifer system (Jang et al., 2008; Yu and Chu, 
2010). Geologic materials are not uniformly distributed. 
Clay-containing sediments are more likely to compact 
with head reductions than sand and gravel formations; 
thus, land subsidence from groundwater pumping is 
more prone to occur in the western part of the study 
area.  

The period of study extends from Jan, 2007 to April, 
2017. Figure 1 shows the location of the study area (i.e. 
Tuku, Huwei and Yuanchang), pumping wells, rainfall 
and GPS stations. A total of 30,407 pumping wells are 
located in the study area. Electricity consumption and 
electric power of all wells are collected. Moreover, 
in-situ pumping volumes, electric-power consumption 
and electric power requirements of the pumping wells 
are acquired at 58 wells that have been identified as 
control points, and at 5 wells that are used for model 
RMSE validation on April, 2015. After the calibration, 
the model was applied for estimation from Jan, 2007 to 
April, 2017. 

 

Figure 1: Location of study area (i.e. Tuku, Huwei and Yuanchang), pumping well locations (green points), high speed railway, 
rainfall and GPS stations.  
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RESULTS  

Validation and Comparisons 

The RMSE of pumping volume on April, 2015 is 
437.8 m3 when the function is used as a linear 
regression (Eq 3). The regression coefficients !! and 
!! are identified by linear regression to be 8.9 (m3/ 
deg) and -116.6 (m3/HP), respectively, while !!  is 
calculated to be 512.2 (m3). However, the RMSE can 
be reduced by about 38% (to 167.7 m3) by using the 
TSR approach (Eq 4). Figure 2 shows the spatial 
patterns and histograms of estimated pumping volume 
from the linear regression and the TSR modeling 
approaches on April, 2015. The estimated volume from 
linear regression is slightly larger than that calculated 
via the TSR model. However, the small estimated 
pumping volume from the TSR model is larger than that 
calculated via the linear regression. Figure 3 shows the 
spatial mapping of estimated pumping volume from the 
original model (Chu et al., 2020), and the TSR 
approach (this paper) for comparison on April, 2007, 
2008 and 2010. The spatial patterns from each method 

are similar but express different details. The estimated 
pumping volumes from the TSR method are less than 
the original approach, especially in the north-east part 
of the study area. The TSR model may be more correct 
because our new model considers simplified 
hydrogeologic properties in the field. 

Pumping Vs Rainfall and Subsidence 

Figure 4 shows the estimated total pumping 
volumes, land subsidence and total rainfall from 2007 
to 2017. Figure 4a shows the estimated total pumping 
volumes based on the previous (original) study (Chu et 
al., 2020, the red color) and the TSR method from this 
study (the blue color). When compared to the original 
model, the maximum difference is about 10.6% when 
compared to the original approach (both peak values 
are similar) at the peak pumping volume. Our approach 
considering spatial regression can be applied 
effectively. In this study, this detailed field 
investigations that include the pipe diameter, well 
characteristics, and aquifer hydraulic conductivity can 
be ignored. Figure 4b shows the variance in monthly 

 

Figure 2: Spatial patterns and histograms of estimated pumping volumes from linear regression (a, b) and TSR 
approaches (c, d) on April, 2015. 
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rainfall distribution from 2007 to 2017 as recorded from 
the weather station in the study area. Results show that 
pumping continues throughout the year regardless of 
rainfall and subsidence continues to occur in the study 
area, especially in 2007, 2008, 2011, and 2015. 
Subsidence occurs in the study area because of 
excessive groundwater pumping and drought 
conditions persisting during the investigation period. 
Figure 4c shows the subsidence series from 2007 to 
2017 at Kezhuang (the blue) and TuKu (the red). The 
results show that subsidence is more severe at TuKu 
than at Kezhuang because subsidence is highly related 
the total pumping volumes. Figure 5 shows the 
estimated average monthly pumping volumes, 
subsidence and rainfall from 2007 to 2017. The high 
pumping volumes (Figure 5a) occur in February, March 

and April, whereas the low ones occur in July to 
December. Therefore, the high subsidence rates 
(Figure 5b) occur from January to May, and especially 
in February and March. The greatest monthly rainfall 
rates occur from June to September (Figure 5c). The 
results show a strong correlation between the pumped 
volume, rainfall and subsidence. The high subsidence 
rates occur in the months with the lowest rainfall and 
highest pumping rate. The monthly groundwater 
withdrawal for irrigation varies from 8.2 million m3 to 
33.0 million m3 in the study area. Farmers regularly and 
seasonally pump water for irrigation in the majority of 
the areas, and they need a large quantity of 
groundwater for irrigation during the spring and in the 
dry season. 

 

Figure 3: Spatial aggregation map of estimated pumping volume from the original (a, b, c) and TSR approaches (d, e, f) on April, 
2007, 2008 and 2010. 
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Figure 4: a. Total pumping volume (red: original; blue: TSR 
model in this study), b. Rainfall time series, and c. GPS 
subsidence data in two stations (blue: Tuku; red: Kezhuang) 
from Jan, 2007 to April, 2017 (no data at Feb and Mar, 2014). 

DISCUSSION 

The TSR models developed for this investigation 
allow for the spatial patterns of pumping volumes to be 
estimated solely on the basis of electricity consumption 
and electric pump power requirements. The approach 
is one of spatial approximation of overall groundwater 
volumes without extensive model calibration. The 
model is an effective calibration process for the spatial 
mapping (Chu et al., 2020; Chu et al., 2021). Generally, 
the pumping volume is a critical parameter to evaluate 
groundwater systems, but is also often elusive because 
pumping rates are often not regulated or monitored. In 
this study, the two major variables such as electricity 
consumption and electric power, were included. Spatial 

uncertainty, such as well characteristics e.g. well depth, 
well diameter, and aquifer hydraulic conductivity can be 
conducted by the TSR. Many factors can affect the 
estimation of pumping volumes, which is shown not to 
be intuitive. That is, pumping volumes are not strongly 
tied to climate parameters such as precipitation. For 
example, Sahoo et al. (2017) suggest that precipitation 
has a stronger influence on seasonal groundwater 
levels than does irrigation demand. Following an 
empirical formulation, parameter coefficients of 
pumping volume estimation are generally quantified on 
the basis of well design, pump power, and hydraulic 
head (Chu et al., 2020). Specially, hydraulic 
conductivity of the aquifer being pumping is another 

 

Figure 5: Monthly averages during the period from Jan, 2007 
to April, 2017 for a. pumping volumes, b. subsidence, and c. 
rainfall at Tuku. 
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major factor. The physical approximation model is used 
to estimate the volume of available groundwater under 
steady-state conditions (Bailey et al., 2017). Model 
inputs also include annual rainfall quantity, aquifer 
extent aquifer hydraulic conductivity, and aquifer depth. 
The observational data used to characterize the 
hydrogeology is limited, which includes the hydraulic 
diffusivity and thickness of the confining layers, the 
distance from the pumping wells, and length of the 
recovery cycle. The aim of this investigation was to 
simplify the regression model for pumping volume 
estimation without involving the use of hydrogeological 
parameters. Thus, the major contribution in this study is 
to consider only two major parameters (electric 
consumption and pump power). The parameters such 
as pipe diameter, well characteristics e.g. well depth, 
well diameter, and static head, and aquifer hydraulic 
conductivity were used for building an empirical 
formula (Chu et al., 2020) but are not needed in the 
simplified approach developed here. The simplified 
model can consider the spatial heterogeneity to reduce 
the uncertainty for the above spatial parameters. The 
TSR model provides a rapid analysis and 
understanding of spatial distribution of pumping 
volumes.  

The TSR model explains the local variability of the 
pumping volumes better than the linear regression 
model. This improved outcome is achieved by only 
using electricity consumption and electric pump power 
requirements. The estimated pumping volume in this 
study is less than the volume estimated in the original 
model from Chu et al., 2020. However, the trends of 
total pumping volume are same as the original model. 
The spatial pattern of pumping is similar in most of the 
study area. Spatial patterns of pumping volume can be 
estimated at other study sites if the electricity 
consumption and electric power requirements of the 
water pumps are provided. In the future, machine 
learning or AI methods will be applied for the 
identification and classification of pumping patterns, for 
the prediction of time-series and formulation of 
decision-making rules (Sahoo et al., 2017; Guzy & 
Malinowska, et al., 2020). 

Land subsidence continues to be a serious and 
continuous problem in the study area. Pumping based 
on variations in seasonal demand increases the 
potential for subsidence during dry seasons (Galloway 
& Burbey, 2011). To prevent this problem, the most 
effective way to reduce the impacts of land subsidence 
in the current study area is to decrease groundwater 
pumping from January to May.  

Limitations include spatial data uncertainty (e.g., 
data missing and geographic masking). Future study 
will consider the uncertainty analysis of model. A 

temporal weighted approach will consider estimation of 
temporal and nonstationary pumping volumes. The 
real-time calibration will be implemented in the future. 
Based on the time-varying in-situ input data, the model 
will be more accurate. Moreover, power efficiency  is 
assumed is assumed to be constant in this study, but it 
can be a spatial variable. Complexity of real world 
ensures that the scope of possible distance metrics is 
far larger than the traditional Euclidean distance. 
Groundwater network distance or flow-path distance 
can be considered in the future. 

CONCLUSIONS  

In this investigation, time-varying spatial regression 
(TSR) is used to estimate total monthly pumping 
volume for a portion of the Choshui River alluvial fan in 
west-central Taiwan on the basis of electricity 
consumption over a decade. This represents a 
significant achievement in an area where tens of 
thousands of unregulated and unmonitored wells are 
used largely for irrigation and contribute to a significant 
amount of land subsidence in the area. We have 
shown that developing a simplified TSR model using 
pumping volumes based only on electricity 
consumption and water pump power requirements is a 
useful and direct way for summarizing the patterns of 
pumping rates in a region. The study helps describe 
the spatiotemporal patterns of groundwater pumping 
volumes that are obtained from electricity consumption 
and pump power of each well. Our modeling framework 
can serve as an alternative approach to estimate 
pumping volumes, especially in regions without any 
subsurface properties such as aquifer parameters. 

Using this model, the point-based and areal 
pumping volumes can be identified. Considering the 
sparse availability of investigations, the use of the 
model represents a powerful solution for future 
monitoring of estimated groundwater volumes in the 
areas. Moreover, the temporal analysis of regional 
pumping, rainfall and subsidence can provide a 
summary for the temporal subsidence patterns (i.e. 
monthly variations and trends). Seasonal variations in 
pumping, and rainfall result in water-level changes that 
subsequently lead to land subsidence. As land 
subsidence from over-pumping continues to be a 
problem in the region, the ability to evaluate and 
identify the relations among rainfall, pumping and 
subsidence is key to developing a sustainable 
water-management plan for mitigating land subsidence. 
This study suggests that the most effective way to ease 
the impacts of land subsidence is to reduce seasonal 
pumping in the study area during the dry and 
agricultural season e.g. from January to May.  
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