Spinel NiAl₂O₄ Based Catalysts: Past, Present and Future

Xinmiao Yu¹, Shifa Wang^{1,*} and Huajing Gao¹

¹School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China

Abstract: Nickel aluminate (NiAl₂O₄) is a kind of partially antispinel structure oxide. Because of its excellent electronic structure and energy level structure, high thermal stability and high charge transfer and separation efficiency, it has a potential application prospect in catalytic oxidation, photocatalysis, adsorption and other fields. In this paper, the synthesis methods of different NiAl₂O₄-based catalysts, their applications in catalytic field and related catalytic mechanisms are reviewed from the appearance of single component NiAl₂O₄, ion-doped NiAl₂O₄ and multiheterojunction NiAl₂O₄ catalysts. The application of NiAl₂O₄ photocatalysts in the field of photocatalysis has gradually shifted from the degradation of drugs, so its photocatalytic mechanism and degradation path need to be further studied. This review points out the direction for the future research of NiAl₂O₄ based catalysts in the field of catalysis.

Keywords: Nickel aluminate, Catalytic oxidation, Photocatalysis, Catalytic mechanism, Photocatalysts.

1. INTRODUCTION

Catalyst is a kind of substance that can degrade other difficult substances without changing its crystal structure, electronic structure, energy level structure and its own properties [1-5]. Depending on the nature of the catalyst itself, it can be used in adsorption, photocatalysis, piezoelectric catalysis, thermocatalysis, catalytic oxidation, biodegradation and other fields [6-13]. These catalysts may be single-component oxides or multicomponent compounds. Their homogeneous characteristics are relatively stable and do not decompose under acid, base or other conditions [14-20]. They can have both magnetic and photoluminescence properties and other properties, especially excellent magnetic properties can make the photocatalyst with high ability of recycling and reducing secondary pollution of water bodies [21-29].

Spinel aluminate is a kind of common catalyst, because of their special physical and chemical properties such as good thermal stability, low surface acidity, mechanical resistance and water transport, so that they have a wide range of applications in ceramic pigments, magnetic devices, refractories, luminous devices, catalysts and other fields [30-35]. Spinel structure oxides generally have the general structure of AB₂O₄, where A=Mg, Ca, Sr, Ba, Mn, Fe, Cu, et. B=Al, Fe, Cr, *et al.* [36-38]. Single-component aluminates are stable and have high charge carrier migration and separation efficiency, so they have potential applications in pigments, catalysis and light-emitting

devices [39-45]. However, due to the large band gap value of aluminate, its application in the field of catalysis is limited. Therefore, surface modification, [46-48] ion doping [49] and heterogeneous structure construction [50-57] are used to enhance its physical and chemical properties.

Nickel aluminate (NiAl₂O₄) is a kind of spinel aluminate with partial antispinel structure, which is a special kind of spinel aluminate [58]. This special structure makes NiAl₂O₄ lattice easy to produce vacancies, defects and other special structures, but does not affect its high stability, so it has been favored by researchers in the field of catalysis [59-61]. It is worth noting that different synthesis methods tend to affect the physicochemical properties of NiAl₂O₄. Therefore, it is of great significance to review the application of NiAl₂O₄ and NiAl₂O₄ based catalysts in the field of catalysis from the synthesis methods.

In this paper, the synthesis methods of NiAl₂O₄, iondoped NiAl₂O₄ and heterojunction NiAl₂O₄ based catalysts are reviewed. The effect of synthesis method on the catalytic activity of NiAl₂O₄ based catalysis is discussed. Based on different types of NiAl₂O₄ based catalysts, its applications in photocatalytic degradation of dyes, pharmaceuticals, catalytic oxidation of methanol, adsorption, and other fields are reviewed in detail. This review will provide technical reference and theoretical guidance for the future research of NiAl₂O₄ based catalysts in the field of catalysis.

2. SYNTHESIS OF NICKEL ALUMINATE BASED CATALYST

2.1. Synthesis of Nickel Aluminate Catalyst

When preparing spinel aluminate, different preparation methods will affect the morphology, particle

^{*}Address correspondence to this author at the School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, Wanzhou, 404000, China; Tel: +86 023 -58106025; E-mail: wangshifa2006@yeah.net

size and crystal structure of the synthetic material, and also directly affect its optical properties and catalytic properties. At present, the preparation methods of nickel aluminate are mainly sol-gel method, [62] coprecipitation method, [63] combustion method, [64] hydrothermal method, [65] solvothermal method, [66] acoustochemical method, [67] polymer solution method, [68] solid state reaction method, [69] and so on.

Sol-gel method is a commonly used method to prepare spinel aluminate. Compared with other methods, it can synthesize ultrafine particles with uniform particle size distribution at a lower temperature, [70] but the synthesis time is relatively long. Kunde et al. [71] successfully prepared spinel NiAl₂O₄ film by combining sol-gel method with ultrasonic induced atomization technology, as shown in Figure 1. Maddahfar et al. [72] synthesized NiAl₂O₄ by modified sol-gel method, and studied the effects of different chelating agents (citric acid monohydrate, oxalic acid, salicylic acid and malic acid) on the morphology, particle size and crystal structure of the synthetic materials. The photocatalytic activity of NiAl₂O₄ on the photocatalytic degradation of methyl orange (MO) was also studied. The results showed that all the samples

were spherical and the best chelating agent was oxalic acid. Zhang *et al.* [73] prepared NiAl₂O₄ using citric acid as chelating agent by sol-gel method, and adjusted the size of NiAl₂O₄ nanoparticles by adjusting the content of Ni. Jeevanandam *et al.* [62] prepared spinel NiAl₂O₄ by sol-gel method, and observed that the calcination temperature would affect the formation and grain size of aluminate nanoparticles. Abdulmajeed *et al.* [74] synthesized spinel NiAl₂O₄ by sol-gel method, and measured the obtained samples with different measurement methods. The experiment showed that the calcination temperature would affect the grain size, and the particle size would increase with the increasing of temperature.

Combustion method is another common method for preparing spinel aluminate. Compared with other methods, it can quickly and easily synthesize materials with different crystal structures. The performance of synthetic materials using combustion depends on the precursor materials used in the synthesis, the fuel, and the heating conditions. [64, 75-78] The precursor material produces oxygen when it is burned, which makes it easy to produce oxides, so simple oxides and complex oxides can be obtained during the combustion reaction [75, 76]. A novel combustion method has been

Figure 1: Process flow chart of preparation of nickel aluminate film by sol-gel assisted ultrasonic atomization technology. Adapted from ref. [71]. Copyright © 2021 Elsevier Inc.

proposed in previous studies, whereby oxidant and fuel are burned at low temperatures (<500°() to produce an exothermic reaction through the gas, producing oxides within minutes [77, 78]. Stella et al. [79] synthesized NiAl₂O₄ using urea and glycine as fuel. The experimental results showed that when urea was used as fuel, there would be large particles in the synthesized powder, while when glycine was used as fuel, the synthesized powder would be fluffy and foamy. This reason may be that the crystal structure of NiAl₂O₄ is affected by the release of gas during the combustion reaction, which is determined by the oxidant and fuel. Elvia Leal et al. [64] used the combustion reaction method to use glycine as fuel to study the effect of excessive fuel on the structure of the synthesized NiAl₂O₄ powder. The experimental results showed that the main phase of NiAl₂O₄ would be produced even with excessive dose, but the larger the dose, the smaller the grain size and the larger the aggregate size. This further shows that fuel can affect the properties and structure of synthetic materials.

In recent years, researchers have developed novel combustion methods based on conventional combustion methods through trial and experiment. Ragupathi et al. [80, 81] synthesized NiAl₂O₄ from extracts of aloe and sesame as fuel by conventional combustion method (CCM) and microwave combustion method (MCM), and analyzed its shape, particle size, crystal structure, optics and catalytic properties. The experimental results show that the combustion reaction of MCM is much shorter than that of CCM, the heating time is relatively shorter, and the prepared NiAl₂O₄ maintains a higher purity. Manikandan et al. [82] proved again the characteristics of fast combustion reaction speed and high purity of prepared materials through experiments.Microwave combustion (MCM) provides a novel method for the synthesis of spinel aluminate.

In recent years, the emergence of sol-gel spontaneous combustion provides a new way to synthesize metal oxides. The combination of sol-gel method and combustion method has the characteristics of simple, low cost, rapid heating and short reaction time [83-85]. Thanit Tangcharoen et al. [86] synthesized $NiAl_2O_4$ by sol-gel spontaneous combustion method and the morphology, particle size and crystal structure were studied by X-ray diffraction (XRD), X-ray absorption near-side structure (XANES), and extended X-ray absorption fine structure (EXAFX). Tangcharoen et al. [87] proved that diethanolamine (DEA) was used as a new fuel to successfully synthesize spinel aluminate by sol-gel spontaneous combustion method, and analyzed its morphology, particle size and crystal structure. The results showed that the aluminate prepared by this method all obtained single-phase spinel structure and different band gap values. Although there are many methods to prepare nickel aluminate, the polyacrylamide gel method has not been used to synthesize nickel aluminate and study its physical and chemical properties.

2.2. Synthesis of Ion-Doped Nickel Aluminate Catalysts

It has been reported that a single ion with bivalent or trivalent properties already possesses conductivity, optics, magnetism and other properties [88]. Metal ions doped aluminate is a simple and effective work to improve the photocatalytic activity of photocatalysts. It can trap electrons and become an effective scavenger, and can prevent electron-hole pair recombination. In recent years, researchers have proposed the method of ion doping nickel aluminate to improve the performance of monomer nickel aluminate on the basis of the good performance of ions. Irshad et al. [89] doped silver ions with good electrical conductivity with nickel aluminate by sol-gel method to improve the electrical properties of monomer nickel aluminate. The experimental results show that the electrical conductivity is obviously improved after silver ion doping. At the same time, Irshad et al. doped silver ions with NiAl₂O₄ by sol-gel method and combined graphite carbon nitride with NiAl₂O₄ by ultrasonicassisted method to synthesize Ag-NiAl₂O₄@g-C₃N₄ composite materials, as shown in Figure 2 [59].

In the field of photocatalysis, doping will change the band gap value of semiconductor, and the band gap value may affect the speed of electron-hole pair generation, thus affecting the photocatalytic degradation efficiency of dyes [59]. Elakkiya et al. [90] doped NiAl₂O₄ with divalent ions (copper, zinc, magnesium) by sol-gel method to degrade methylene blue (MB) and methyl orange (MO), and studied their optical properties. The experimental results show that the degradation efficiency of MB and MO is Mg>Zn> original sample >Cu, and the performance of Mg doping is better. The reason is that the band gap of $Mg_{0.1}Ni_{0.9}Al_2O_4$ is lower than that of $Cu_{0.1}Ni_{0.9}Al_2O_4$, $Zn_{0.1}Ni_{0.9}Al_2O_4$ and $NiAl_2O_4$. This may be because when the band gap value is low, it inhibits the production of electron-hole pairs and therefore dyes

Figure 2: Flow chart of Ag-NiAl₂O₄ synthesis by sol-gel method and Ag-NiAl₂O₄@g-C₃N₄ synthesis by ultrasonic assisted method. Adapted from ref. [59]. Copyright © 2022 Elsevier B.V.

mineralization faster. Experimental results show that the degradation efficiency of Ag-NiAl₂O₄ is much higher than that of single component NiAl₂O₄, and the band gap measured by single component NiAl₂O₄ is 3.5eV, and the band gap measured by doping is 2.66 eV. Confirming the previous idea, lower band gap values can more easily inhibit the generation of electron-hole pairs, thus improving the photocatalytic efficiency.

Akika et al. [91] prepared Ni_{1-x}Cu_xAl₂O₄ (x=0.2, 0.4, 0.6, 0.8, 1) nanomaterials by Cu doping NiAl₂O₄ by the coprecipitate method and used it for photocatalytic degradation of Congo red (CR). The band gap values of Ni_{1-x}Cu_xAl₂O₄ with different doping ratios were measured in the experiment. The results showed that the degradation rate of Ni_{1-x}Cu_xAl₂O₄ was much higher than that of the original sample NiAl₂O₄. Regulska et al [92] doped Er, Tm, Yb with NiAl₂O₄ and used it for photocatalytic degradation of oxytetracycin (OTC). The band gap values of NiAl₂O₄, Yb-NiAl₂O₄, Tm-NiAl₂O₄ and Er-NiAl₂O₄ measured in the experiment are 3.45, 3.41, 3.27 and 3.12 eV, respectively. The photocatalytic degradation efficiency is Er-NiAl₂O₄>Tm-NiAl₂O₄>Yb-NiAl₂O₄>NiAl₂O₄. Therefore, the above conclusion is further confirmed. Effectively changing the band gap value can improve the efficiency of photocatalysis.

2.3. Synthesis of Nickel Aluminate Based Composite Catalysts

In recent years, researchers have compounded NiAl₂O₄ based on a single component to improve the performance of the monomer. Dhara et al. [93] synthesized thermally stable NiAl₂O₄/Al₂O₃ nanocomposite powder samples by isomolar mechanochemical reaction, and the synthesis process was shown in Figure 3. They also studied the microstructure characterization, optical properties, electrical transport and dielectric properties of NiAl₂O₄/Al₂O₃. Arunkumar et al. [94] synthesized aluminate activated carbon (MAAC) matrix composites by coprecipitate method. The results show that the photocatalytic efficiency of activated carbon matrix composites is much higher than that of nickel aluminate matrix composites. Kunde et al. [95] synthesized nickel aluminate/multi-walled carbon nanotubes NiAl₂O₄/MWCNT by an environmentally friendly modified evaporation-induced self-assembly process (m-EISA). Muralidharan et al. [96] successfully synthesized NiAl₂O₄ and SiO₂ composites (NiAl₂O₄:SiO₂) by using in situ sol-gel method. Due to the excellent properties of g-C₃N₄, Ahmad et al. [97] synthesized NiAl₂O₄ and g-C₃N₄ binary composite by calcination and ultrasonic-assisted method to improve the performance of photodegradation of 2, 4-

Figure 3: Schematic diagram of the synthesis of NiAl₂O₄/Al₂O₃ nanocomposites. Adapted from ref. [93]. Copyright © 1999-2023 John Wiley & Sons, Inc.

dinitrophenol. Regulska *et al.* [98] prepared a composite material of NiAl₂O₄ and graphene quantum dots (GQDS) using coprecipitation method. It is used in photocatalytic degradation of rhodamine B, quinoline yellow, eriochrome black T, and methylene blue.

3. APPLICATION OF NIAL $_2O_4$ BASED CATALYSTS IN THE FIELD OF CATALYSIS

NiAl₂O₄ belongs to partial antispinel and is a mixed cationic oxide with normal spinel structure. Half of the Al³⁺ ions are distributed in the tetrahedral void and the other half is distributed in the octahedral void. Ni occupies the tetrahedral position and has a stable structure and high catalytic activity at high temperature. Although spinel NiAl₂O₄ has a large specific surface area and small particle size, it can easily separate electrons and holes and inhibit the recombination of electron hole pairs under ultraviolet light, so it can be used as a photocatalyst. Due to the continuous emergence of ion-doped NiAl₂O₄ photocatalysts and heterojunction NiAl₂O₄ based photocatalysts, the catalytic activity of single component NiAl₂O₄ has been greatly improved. These catalysts have been widely used in the degradation of drugs, azo dyes, refractory pollutants, catalytic oxidation of benzyl alcohol and methanol, photocatalytic water hydrogen production, etc.

The application of NiAl₂O₄ in catalysis began in 1994, when Pena et al. [99] used NiO/NiAl₂O₄ to study the effect of catalyst pretreatment on the relative rates of the main reaction and coking reaction during acetylene hydrogenation. Subsequently, the research upsurge of NiAl₂O₄ in catalytic field was set off [100-103]. However, the research of NiAl₂O₄ in the field of photocatalysis is relatively late. It was only reported in 2014 that NiAl₂O₄ was used to photocatalyze hydrogen production from water [104, 105]. Since then, NiAl₂O₄ has gradually been used to dedegrade dyes [72]. Simultaneously, NiAl₂O₄ is also used to adsorb heavy metal ions due to its excellent adsorption performance [106]. In recent years, researchers are trying to use new methods to enhance the photocatalytic activity of NiAl₂O₄ to degrade refractory pollutants and drugs.

3.1. Application of NiAl $_2O_4$ Based Catalysts in the Field of Photocatalytic Degradation of Dyes

The application of NiAl₂O₄ in dye degradation mainly focuses on the study of photocatalysis. Due to its special electronic structure and energy level structure, NiAl₂O₄ can only respond to UV light, so most of the research work focuses on the catalytic activity of UV light. Because the sunlight contains a certain amount of ultraviolet light, so some researchers have used NiAl₂O₄ in the field of solar photocatalysis.

Figure 4: Photocatalytic mechanism of Ag-NiAl₂O₄@g-C₃N₄ photocatalysts. Adapted from ref. [59]. Copyright © 2022 Elsevier B.V.

As the research progresses, researchers are working on how to use the visible light in sunlight, which makes up the majority of sunlight, to develop NiAl₂O₄ based photocatalysts driven by visible light. The following strategies have been adopted to enhance the photocatalytic activity of NiAl₂O₄. In order to solve the problem of large band gap value of NiAl₂O₄, the band gap value of NiAl₂O₄ can be degraded by ion doping, so as to improve its optical response range, so that NiAl₂O₄ can respond to visible light. Noble metal particles are good carriers for electron transport. The modification of noble metal particles on the surface of NiAl₂O₄ will help to enhance its photocatalytic activity. The photocatalytic activity of NiAl₂O₄ can be greatly improved by combining some excellent visible light responsive semiconductor materials with NiAl₂O₄, in addition to introducing interfacial defects to enhance the transfer and separation of electron and hole pairs.

Table **1** shows the comparison of the application of NiAl₂O₄ based photocatalyst for the degradation of dyes [34, 59, 72, 87, 90, 91, 94, 107-112]. It can be seen from Table **1** that NiAl₂O₄ has high photocatalytic activity in the degradation of organic dyes under ultraviolet light. According to the calculation of specific activity, NiAl₂O₄ synthesized by different methods has different photocatalytic activity, and when NiAl₂O₄

degrades different dyes, its photocatalytic activity is also different. This was sufficient to confirm that NiAl₂O₄ was selective in degrading dyes. When NiAl₂O₄ is doped with different ions such as Mg, Zn and Cu, the photocatalytic activity of ZnAl₂O₄ is greatly affected by different metal ions. With the increase of ionic radius, the photocatalytic activity of ZnAl₂O₄ decreases. The NiAl₂O₄ use of ion-doped photocatalysts for degradation of different dyes did not show strong selectivity. The photocatalytic activity of NiAl₂O₄ can be enhanced by ion doping, surface modification of noble metal ions and heterojunction construction.

It is interesting that Irshad *et al.* [59] synthesized Ag-NiAl₂O₄/g-C₃N₄ composite photocatalysts by sol-gel method with high photocatalytic activity in the degradation of organic dyes. By modifying Ag particles on the surface of NiAl₂O₄ and coupling with g-C₃N₄ to form heterojunction, the NiAl₂O₄ based photocatalyst has high charge transfer and separation efficiency, which enhances the photocatalytic activity of NiAl₂O₄. Figure **4** shows the photocatalytic mechanism of Ag-NiAl₂O₄@g-C₃N₄ photocatalysts. Hydroxyl radicals and superoxide radicals dominate the entire photocatalytic reaction, eventually interacting with dyes to produce CO₂ and H₂O.

Table 1:Comparison of the Application of NiAl2O4 Based Photocatalyst for the Degradation of Dyes. MB- Methylene
Blue, MO- Methylene Orange, CV-Crystal Violet, RhB- Rhodamine B, BA- Weak Acid Brilliant blue, CR- Congo
Red, MG- Malachite Green, MR-methyl red, D-Degradation Percentage, SA-Specific Activity

Samples	Dye	Lamp	$C_{Catalyst}$ (g·L ⁻¹)	C _{Dye} (mmol L ^{−1})	t (h)	D (%)	SA (mmol/g/h)	Ref.	
Zn _{0.1} Ni _{0.9} Al ₂ O ₄	MB	UV light	1.5	0.0312	2	93%	0.0097		
Mg _{0.1} Ni _{0.9} Al ₂ O ₄ MB		UV light	1.5	0.0312	2	97%	0.0101	00	
NiAl ₂ O ₄	MB	UV light	1.5	0.0312	2	91%	0.0095	90	
Cu _{0.1} Ni _{0.9} Al ₂ O ₄ MB		UV light	1.5	0.0312	3	90%	0.0063		
NiAl ₂ O ₄	MB	Visible lights	0.2	0.0312	1	47%	47% 0.0733		
NiAl ₂ O ₄	MB	Visible lights	0.3	1×10⁻⁵M	2	94%	/	[107]	
NiAl ₂ O ₄	MB	UV light	0.2	0.0312	1.4	94.2%	0.1049	[87]	
NiAl ₂ O ₄	MB	Sun light	0.2	0.0156	2.7	58.16%	0.0168		
Ag-NiAl ₂ O ₄	MB	Sun light	0.2	0.0156	2.7	71.13%	0.0205	[59]	
Ag-NiAl ₂ O ₄ @g-C ₃ N ₄	MB	Sun light	0.2	0.0156	2.67	85.26%	0.0249		
NiAl ₂ O ₄	MB	UV light	0.5	0.0312	1	54%	0.0336		
NiAl _{1.98} Bi _{0.02} O ₄	MB	UV light	0.5	0.0312	1	89%	0.0554	[108]	
NiAI _{1.98} Ce _{0.02} O ₄	MB	UV light	0.5	0.0312	1	94%	0.0586		
NiAl ₂ O ₄	MB	UV light	0.4	0.00625	1.67	99%		[109]	
Zn _{0.1} Ni _{0.9} Al ₂ O ₄	МО	UV light	1.5	0.0305	3	92%	0.0062		
Mg _{0.1} Ni _{0.9} Al ₂ O ₄	МО	UV light	1.5	0.0305	1.5	96%	0.0130	1501	
NiAl ₂ O ₄	МО	UV light	1.5	0.0305	3	94%	0.0064	[59]	
Cu _{0.1} Ni _{0.9} Al ₂ O ₄	МО	UV light	1.5	0.0305	3	84%	0.0057		
NiAl ₂ O ₄	МО	Tungstate lamps			4.5	90%		[72]	
NiAl ₂ O ₄	МО	Mercur lamp		0.1527	1.33	82%		[110]	
NiAl ₂ O ₄	МО	UV light	0.2	0.0305	1.4	88.4%	0.0962	[87]	
NiAl ₂ O ₄	MO	UV light	0.5	0.0312	1	31%	0.0193		
NiAl _{1.98} Bi _{0.02} O ₄	MO	UV light	0.5	0.0312	1	91%	0.0568	[108]	
NiAI _{1.98} Ce _{0.02} O ₄	NiAl _{1.98} Ce _{0.02} O ₄ MO		0.5	0.0312	1	94%	0.0587		
NiAl ₂ O ₄	NiAl ₂ O ₄ CV		0.2	0.0484	2.7	57.14%	0.0512		
Ag-NiAl ₂ O ₄ CV		Sun light	0.2	0.0484	2.7	70.52%	0.0632	[59]	
Ag-NiAl ₂ O ₄ @g-C ₃ N ₄	CV	Sun light	0.2	0.0484	2.67	83.87%	0.0760		
NiAl ₂ O ₄	RhB	UV light	0.2	0.0208	1.4	91.7%	0.0681	[87]	
NiAl ₂ O ₄	RhB	UV light	0.5	0.0312	1	73%	0.0456	_	
NiAl _{1.98} Bi _{0.02} O ₄	RhB	UV light	0.5	0.0312	1	87%	0.0543	[108]	
NiAl _{1.98} Ce _{0.02} O ₄	NiAl _{1.98} Ce _{0.02} O ₄ RhB UV		0.5	0.0312	1	90%	0.0562		
Ag-NiAl ₂ O ₄ @g-C ₃ N ₄	BA	Sun light	0.2	0.0409	2.67	68.46%	0.0524	[59]	
NiO/NiAl ₂ O ₄	CR	UV light	0.33	0.9616	2/3	88.91%/100%	1.2953/0.9713	[111]	
$Ni_{0.2}Cu_{0.8}Al_2O_4$	CR	Xenon lamp	1	0.5769	3	90.55%	0.1741	[91]	
$Co_{0.85}Ni_{0.15}Al_{2}O_{4-\delta}\ /AC$	MG	Tungsten halogen lamp	0.05	1x10-4M	1.5	100%	1	[94]	
NiAl ₂ O ₄	MG	Visible lights	0.3	1X10-5M	2	89%	1	[107]	
NiAl ₂ O ₄	MG	Visible lights	1	0.0027	2	42%	0.0006	[110]	
Ni _{1-x} Co _x Al ₂ O _{4-õ}	MG	Visible lights	1	0.0027	2	20%~39%	0.0003~0.0005	[''4]	
NiAl ₂ O ₄	MR	IR UV light 0.2 0.0371 1.4 88.9% 0.1178		[87]					

3.2. Application of NiAl $_2O_4$ Based Catalysts in the Field of Photocatalytic Degradation of Drugs

In recent years, with the further development of the study of photocatalysis in the field of dyes, the

photocatalysis mechanism and the reaction process of dye degradation are familiar, which makes the study of dyes fall into a trough. Even from the structure of the dye, its structure is so simple that different catalysts are used to degrade the same reaction process, which allowed researchers to guickly understand its reaction mechanism. In order to promote the rapid development of research in the field of photocatalysis, researchers have focused on the degradation of drugs. The molecular structure of drugs such as antibiotics is complex, and the study of its degradation process needs to be combined with many professional characterization equipment and rich research experience of researchers. Therefore, synthesis of new photocatalysts to degrade drugs has become a new research direction in the field of photocatalysis.

The same is true for NiAl₂O₄ photocatalyst research, researchers have gradually shifted the focus of research to photocatalytic degradation of drugs. Table 2 shows the comparison of the application of NiAl₂O₄ based photocatalyst for the degradation of drugs [34, 92, 113, 114]. Similar to the study on dyes, the researchers also used ion doping and heterostructure to improve the photocatalytic activity of NiAl₂O₄ photocatalysts for the photocatalytic degradation of drugs. Since it was in its infancy, NiAl₂O₄ based photocatalysts were only used to degrade tetracycline hydrochloride, 2,4-dichlorophenol and oxytetracycline hydrochloride. By doping NiAl₂O₄ with rare earth metal ions, it was found that the photocatalytic activity of NiAl₂O₄ increased with the increase of ionic radius, which was contrary to the trend of dye degradation. The main reason is that with the increase of the radius of rare earth ion, the outermost electron of rare earth ion is easy to be activated by light energy to produce free electrons, which promotes the separation and transfer of charge carriers, and thus enhances the photocatalytic activity of NiAl₂O₄ based photocatalyst.

Figure 5 shows the proposed mechanism of the rare- earth-metals-doped nickel aluminates [92]. The more electrons in the outermost layer of rare earth ions are, the easier they are to be excited by sunlight, which contributes to the transfer and separation in the photocatalytic process, thus promoting the generation of hydroxyl radicals and superoxide radicals. Meanwhile, because NiAl₂O₄ is partially antispinel structure, rare earth ion doping will further affect its internal crystal structure, electronic structure and energy level structure, resulting in lattice distortion, produce oxygen vacancy or defect, and enhance the transfer and separation of electron and hole pairs in NiAl₂O₄ based photocatalysts. However, the research of NiAl₂O₄-based photocatalysts for drug degradation is not mature, especially the photocatalytic mechanism, drug degradation path and reaction process need further exploration in order to understand their internal mechanism.

Figure 5: The proposed mechanism of the rare- earthmetals-doped nickel aluminates. Adapted from ref. [92]. Copyright © 2022 Elsevier B.V.

Samples	Drug	Lamp	C _{Catalyst} (g·L ⁻¹)	C _{Drug} (mmol L ⁻¹)	t (h)	D (%)	SA (mmol/g/h)	Ref.
NiAl ₂ O ₄ /g-C ₃ N ₄	TC	Sun light	0.3	0.0264	2	90%	0.0396	[113]
NiAl ₂ O ₄	TC	UV light	0.5	0.0132	0.5	83%	0.0439	[34]
NiO–NiAl ₂ O ₄	₂ O ₄ 2,4-dichlorophenol		2	0.2454	2	94%	0.0577	[114]
NiAl ₂ O ₄	OTC	Sun light	1.5	0.00003	2	27%	0.0000027	
Yb-NiAl ₂ O ₄	OTC	Sun light	1.5	0.00003	2	49%	0.0000049	1001
Tm-NiAl ₂ O ₄ OTC		Sun light	1.5	0.00003	2	62%	0.0000062	[92]
Er-NiAl ₂ O ₄ OTC		Sun light	1.5	0.00003	2	73%	0.0000073	

Table 2: Comparison of the Application of NiAl₂O₄ Based Photocatalyst for the Degradation of Drugs. TC-Tetracycline Hydrochloride, OTC-Oxytetracycline Hydrochloride

3.3. Application of NiAl₂O₄ Based Catalysts in the Field of Catalytic Oxidation of Benzyl Alcoho and Methanol

Experimental research on the catalytic oxidation of NiAl₂O₄ has been going on for a long time, more than a decade before its use in photocatalytic degradation of dyes and drugs. In the early years, arousing the attention of many scientific researchers, NiAl₂O₄ was used in oxidative degradation benzyl alcoho and methanol. Table **3** shows the comparison of the application of NiAl₂O₄ based photocatalyst for the catalytic oxidation of benzyl alcoho [30, 115]. By doping Co ions into the lattice of NiAl₂O₄ and catalyzing the oxidation of benzyl alcoho, researchers found that it has a high catalytic oxidation performance. Similarly, the crystal structure and microstructure of NiAl₂O₄ have great influence on its catalytic oxidation performance.

The catalytic oxidation performance of $NiAl_2O_4$ can be improved effectively by fabricating special defective structures with the antispinel structure.

Similar to the study of photocatalysis, the catalytic oxidation performance of single component NiAl₂O₄ is relatively low, so special methods should be used to enhance its catalytic oxidation performance. Therefore, MgO/NiAl₂O₄ composite oxides with different mass percentages were synthesized to investigate their catalytic oxidation properties. Table **4** shows the comparison of the application of NiAl₂O₄ based photocatalyst for the catalytic oxidation of methanol [116-118]. The results confirm that NiAl₂O₄-based catalyst methanol has high catalytic oxidation capacity.

Figure **6** shows the redox mechanism of methanol over $Pt/NiAl_2O_4$ and $Pt/\gamma-Al_2O_3$. Li *et al.* [119] prepared

Table 3: Comparison of the Application of NiAl₂O₄ Based Photocatalyst for the Catalytic Oxidation of Benzyl Alcoho

Samples	Organic matter	Ccatalyst (g·L ^{−1})	Oxidant	Temperature/Time	Conversion (%)	Selectivity (%)	Ref.
NiAl ₂ O ₄	Benzyl alcoho	0.5	Benzyl alcohol (5 mmol) H ₂ O ₂ (5 mmol)	80 [°] C/8 h	60	100	[80]
Ni _{0.6} Co _{0.4} Al ₂ O ₄	Benzyl alcohol	0.5	Benzy lalcohol (5 mmol) acetonitrile (5 mmol) H ₂ O ₂ (5 mmol)	80 °C/5 h	94	100	[115]

Table 4:	Comparison of the Application of NiAl ₂ O ₄ Based Photocatalyst for the Catalytic Oxidation of Methanol

Samples	Organic matter	Ccatalyst (g·L ^{−1})	Oxidant	Temperature/ Time	XCH₄,%	Y _{H2}	Y _{co}	Y _{CO2}	H₂/CO	CO/CO ₂	Ref.
5wt.% MgO/ NiAl₂O₄	38,400 cm³ CH4 g ^{⁻1} h ^{−1}	0.125	10%CH ₄ /5% O ₂ /85%N ₂ (O/C = 1)	700 [°] C/ 20 h	83	0.92	0.75	0.08	2.8	9.6	[116]
5wt.% MgO/ NiAl₂O₄	38,400 cm³ CH₄ g ^{−1} h ^{−1}	0.125	10%CH ₄ /5% O ₂ /85%N ₂ (O/C = 1)	700 [°] C/ 20h/25 h	63	0.46	0.56	0.07	1.7	7.8	[110]
NiAl ₂ O ₄ (0.5)	38400 mL CH₄ g ^{⁻1} h ^{−1}	0.125	O/C = 1	650 °C/3 h	73	0.67	0.55	0.18	2.4	3	[117]
NiAl ₂ O ₄ (0.5)	38400 mL CH₄ g ^{⁻1} h ^{−1}	0.125	O/C = 1	700 [°] C/3 h	82	0.77	0.69	0.13	2.2	5.3	[117]
NiAl ₂ O ₄	4800 mL CH₄ g ^{⁻1} h ^{−1}	0.5	10%CH₄/5% O₂/N₂	550 °C	1	1.82	0.52	0,57	3.5		
NiAl ₂ O ₄	4800 mL CH₄ g ^{⁻1} h ^{−1}	0.5	10%CH₄/5% O₂/N₂	650 °C	1	1.77	0.78	0.15	2.29	/	[119]
NiAl ₂ O ₄	4800 mL CH₄ g ^{−1} h ^{−1}	0.5	10%CH₄/5% O₂/N₂	750 °C	1	1.74	0.82	0.04	2.11	/	[110]
NiAl ₂ O ₄	4800 mL CH₄ g ^{⁻1} h ^{−1}	0.5	10%CH₄/5% O₂/N₂	850 °C	1	1.72	0.83	0.02	2.08	/	

Figure 6: The redox mechanism of methanol over $Pt/NiAl_2O_4$ and $Pt/\gamma-Al_2O_3$. Adapted from ref. [119]. Copyright © 2019 American Chemical Society.

the Pt/NiAl₂O₄ and Pt/y-Al₂O₃ catalysts by coprecipitation method combined with incipient wetness impregnation method. The phase structure, microstructure and catalytic oxidation performance of different catalysts were studied bv different characterization methods. For the Pt/NiAl₂O₄ catalyst, Pt than Pt/y-Al₂O₃ catalyst has high reducing capacity, methanol can methanol catalytic oxidation, improve NiAl₂O₄ catalytic oxidation performance. The catalytic oxidation performance of NiAl₂O₄ based catalyst has been concerned by researchers since its discovery, and is still in continuous research.

3.4. Other Applications of NiAl₂O₄ Based Catalysts

NiAl₂O₄ based catalysts has been widely used in the degradation of dyes, drugs and catalytic oxidation of methanol, and also has potential applications in the photocatalytic reduction of Cr(VI) ions, photocatalytic water hydrogen production and other fields. Bouallouche et al. [120] constructed a NiAl₂O₄/ZnO heterojunction that allows photocatalytic reduction of Cr(VI) ions under visible light. Of course, in terms of dve adsorption, CeO₂/NiO/NiAl₂O₄ ternary nanocomposite was constructed to adsorb Direct Red 23 dye, and the results showed that this adsorbent has high adsorption capacity. [121] Sebai et al. [122] using nitrate route, the preparation of the spinel NiAl₂O₄ and studied its photocatalytic hydrogen production capacity, the result indicates that it under visible light irradiation conditions with high hydrogen production ability. Due to the special crystal structure, microstructure and energy level structure of NiAl₂O₄, its application in the field of catalysis has been paid more and more attention, and some new research fields are also being further

studied. Therefore, its research in the new catalytic field will be pursued by more and more researchers and push it towards the climax of the study. Electrocatalysis is a way of clean energy conversion. It is very important to select a reasonable and stable catalyst [123, 124]. Ni has higher alloying efficiency than other metals. Therefore, when conducting electrocatalytic experiments, choosing Ni composite materials can better provide the required properties [125]. Aman et al. [126] prepared a composite material of NiAl₂O₄ and graphene oxide (GO) as an efficient OER electrocatalyst. On the basis of good electrical conductivity and electron transport ability of carbonbased materials, Aman et al. [127] chose NiAl₂O₄ to be combined with it to improve the electrochemical and catalytic performance of OER. Regulska et al. [128] have combined NiAl₂O₄ with graphene quantum dots (GQDs) and conducted electrochemical studies. The results show that for monomer NiAl₂O₄, the composite ultracapacitor has strong and electrocatalytic performance.

4. CONCLUSIONS AND PROSPECT

The synthesis of NiAl₂O₄ based catalysts and their applications in the degradation of dyes, pharmaceuticals, catalytic oxidation of methanol and other applications are reviewed. The catalytic activity of NiAl₂O₄ based catalyst is strongly dependent on the preparation method, crystal structure, energy level structure and microstructure. The research on the catalytic activity of NiAl₂O₄ based catalysts is expanding from catalytic oxidation, photocatalytic degradation of dyes, drugs, adsorption and photocatalytic hydrogen production. NiAl₂O₄ based catalyst is selective to degradation of dyes, and its

photocatalytic activity varies with the different types of ion doping. Based on the results of the study on the catalytic activity of single-component NiAl₂O₄, iondoped NiAl₂O₄ and heterogeneous structures of multicomponent NiAl₂O₄ heterojunction catalysts, the related catalytic mechanisms are also reviewed in detail.

As a promising catalyst, its research in some aspects is still in the exploratory stage, which can be explored in future studies as follows:

- 1. The construction of a new NiAl₂O₄ based photocatalyst heterojunction and its photocatalytic mechanism were investigated by combining the first principles calculation and experimental study.
- 2. Based on different intelligent algorithms, an intelligent algorithm optimized neural network model was established to predict the catalytic activity of the synthesized catalyst, and then the optimized prediction model was obtained to predict its catalytic performance.
- 3. High entropy alloy is a promising photocatalyst. By coupling it with NiAl₂O₄ to construct high entropy alloy /NiAl₂O₄ heterojunction photocatalyst, using the excellent electron transport ability, cocktail effect and visible light response ability of high entropy alloy, a novel photocatalyst with high efficiency can be obtained.
- 4. Metal-organic framework materials (MOFs) are a kind of coordination polymers. By combining MOFs with NiAl₂O₄ to construct MOFs/NiAl₂O₄ heterojunction photocatalysts, MOFs/NiAl₂O₄ photocatalysts are expected to be a new reliable photocatalyst due to the design of their own structures and the tunability of photon absorption.

COMPETING INTERESTS

The authors declare that they have no competing interests.

ACKNOWLEDGMENTS

This work was supported by the NSAF joint Foundation of China (U2030116), the Science and Technology Research Program of Chongqing Education Commission of China (KJZD-K202001202, KJQN202201204), the Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area

(No. ZD2020A0401), the Talent Introduction Project (09924601) of Chongqing Three Gorges University.

REFERENCES

- [1] Cheng, T.; Gao, H.; Liu, G.; Pu, Z.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi₄Ti₃O₁₂ hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 633, 127918. https://doi.org/10.1016/j.colsurfa.2021.127918
- [2] Wang, S.; Tang, S.; Gao, H.; Yu, C.; Yang, H.; Yu, X.; Chen, X.; Fang, L.; Li, D. Removal of congo red from wastewater using ZnO/MgO nanocomposites as adsorbents: Equilibrium isotherm analyses, kinetics and thermodynamic studies. Journal of Nano Research 2023, 77, 65–86 https://doi.org/10.4028/p-aijz91
- [3] Li, L.; Gao, H.; Liu, G.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Synthesis of carnation flower-like Bi₂O₂CO₃ photocatalyst and its promising application for photoreduction of Cr(VI). Advanced Powder Technology 2022, 33, 103481. <u>https://doi.org/10.1016/j.apt.2022.103481</u>
- [4] Li, L.; Gao, H.; Yi, Z.; Wang, S.; Wu, X.; Li, R.; Yang, H. Comparative investigation on synthesis, morphological tailoring and photocatalytic activities of Bi₂O₂CO₃ nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 644, 128758. <u>https://doi.org/10.1016/j.colsurfa.2022.128758</u>
- [5] Wang, S.; Yu, X.; Gao, H.; Chen, X. Hexagonal ferrite MFe₁₂O₁₉ (M=Sr, Ba, Cu, Ni, Pb) based photocatalysts: Photoluminescence, photocatalysis and applications. Journal of Environmental Science and Engineering Technology 2022, 10, 52-69. <u>https://doi.org/10.12974/2311-8741.2022.10.06</u>
 - https://doi.org/10.12974/2311-8741.2022.10.06
- [6] Li, L.; Sun, X.; Xian, T.; Gao, H.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Template-free synthesis of Bi₂O₂CO₃ hierarchical nanotubes self-assembled from ordered nanoplates for promising photocatalytic application. Physical Chemistry Chemical Physics 2022 24 8279–8295. <u>https://doi.org/10.1039/D1CP05952A</u>
- [7] Yu, C.; Wang, S.; Zhang, K.; Li, M.; Gao, H.; Zhang, J.; Yang, H.; Hu, L.; Jagadeesha, A.V.; Li, D. Visible-lightenhanced photocatalytic activity of BaTiO_{3/y}-Al₂O₃ composite photocatalysts for photodegradation of tetracycline hydrochloride. Optical Materials 2023, 135, 113364. <u>https://doi.org/10.1016/j.optmat.2022.113364</u>
- [8] Chen, C.; Wang, Y.; Yi, Z.; Wang, S.; Ma, J.; Gao, H.; Wu, X.; Liu, G.; Yang, H. PH-induced structural evolution, photodegradation mechanism and application of bismuth molybdate photocatalyst. Advanced Powder Technology 2022, 33, 103858. https://doi.org/10.1016/j.apt.2022.103858
- [9] Chen, X.; Liu, H.; Li, M.; Wang, S. Hexagonal lead ferrite magnetic separation catalysts: Synthesis, optical characterization, ultrasonic catalytic activity and performance prediction. Journal of Modern Polymer Chemistry and Materials 2022, 1, 11. https://doi.org/10.53964/impcm.2022011
- [10] Chen, C.; Ma, J.; Wang, Y.; Yi, Z.; Wang, S.; Gao, H.; Wu, X.; Liu, G.; Yang, H. CTAB-assisted synthesis of Bi₂MoO₆ hierarchical microsphere and its application as a novel efficient and recyclable adsorbent in removing organic pollutants. Colloids Surfaces A: Physicochemical and Engineering Aspects 2023, 656, 130441. https://doi.org/10.1016/j.colsurfa.2022.130441
- [11] Wang, S.; Yu, C.; Chen, X.; Zhang, K.; Gao, H.; Yu, X.; Zhao, X.; Fang, L.; Chen, X.; Zhang, J. Synthesis and characterization of BaTiO₃/TiO₂ heterojunction photocatalyst

for novel application in photocatalytic degradation of TBBPA under simulated sunlight irradiation. ChemistrySelect 2022, 7, e202202764. https://doi.org/10.1002/slct.202202764

- [12] Chen, X.; Wang, S.; Gao, H.; Yang, H.; Fang, L.; Chen, X.; Tang, S.; Yu, C.; Li, D. A novel lead hexagonal ferrite (PbFe₁₂O₁₉) magnetic separation catalyst with excellent ultrasonic catalytic activity. Journal of Sol-Gel Science and Technology 2022, 1-16. <u>https://doi.org/10.1007/s10971-022-05937-3</u>
- [13] Gao, H.; Wang, Y.; Wang, S.; Yang, H.; Yi, Z. A simple fabrication, microstructure, optical, photoluminescence and supercapacitive performances of MgMoO₄/MgWO₄ heterojunction micro/nanocomposites. Solid State Sciences 2022, 129. https://doi.org/10.1016/j.solidstatesciences.2022.106909
- [14] He, Z.; Yang, H.; Wong,N.H.; Ernawati, L.; Sunarso, J.; Huang, Z.; Xia, Y.; Wang, Y.; Su, J.; Fu, X.; Wu, M. Construction of Cu₇S₄@CuCo₂O₄ yolk-shell microspheres composite and elucidation of its enhanced photocatalytic activity, mechanism, and pathway for carbamazepine degradation. Small. https://doi.org/10.1002/smll.202207370
- [15] He, Z.; Hasan, Fareed.; Yang, H.; Xia, Y.; Su, J.; Wang, L.; Kang, L.; Wu, M.; Huang, Z. Mechanistic insight into the charge carrier separation and molecular oxygen activation of manganese doping BiOBr hollow microspheres. Journal of Colloid and Interface Science 2023, 629, 355-367. <u>https://doi.org/10.1016/j.jcis.2022.08.164</u>
- [16] Wang, S.; Review on the synthesis and the application of neutron powder diffraction in M-type ferrites. Acta Scientific Applied Physics, 2022, 2, 09-17. https://www.researchgate.net/publication/366271772_Review _on_the_Synthesis_and_the_Application_of_Neutron_Powd er_Diffraction_in_M-type_Ferrites
- [17] Gao, H.; Wang, S.; Wang, Y.; Yang, H.; Fang, L.; Chen, X.; Yi, Z.; Li, D. Fabrication and characterization of BaMoO₄coupled CaWO₄ heterojunction micro/nanocomposites with enhanced photocatalytic activity towards MB and CIP degradation. Journal of Electronic Materials 2022, 51, 5230-5245. https://doi.org/10.1007/s11664-022-09769-3

[18] He, Z.; Yang, H.; Sunarso, J.; Wong, N.H.; Huang, Z.; Xia,

- Y.; Wang, Y.; Su, J.; Wang, L.; Kang, L. Novel scheme towards interfacial charge transfer between ZnIn₂S₄ and BiOBr for efficient photocatalytic removal of organics and chromium (VI) from water. Chemosphere 2022, 303, 134973. https://doi.org/10.1016/j.chemosphere.2022.134973
- [19] Wang, S.; Gao, H.; Jin, Y.; Chen, X.; Wang, F.; Yang, H.; Fang, L.; Chen, X.; Tang, S.; Li, D. Defect engineering in novel broad-band gap hexaaluminate MAI₁₂O₁₉ (M= Ca, Sr, Ba)-based photocatalysts boosts near ultraviolet and visible light-driven photocatalytic performance. Materials Today Chemistry 2022, 24, 100942. <u>https://doi.org/10.1016/j.mtchem.2022.100942</u>
- [20] He, Z.; Siddique, M.S.; Yang, H.; Xia, Y.; Su, J.; Tang. B.; Wang, L.; Kang, L.; Huang, Z. Novel Z-scheme In₂S₃/Bi₂WO₆ core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride. Journal of Cleaner Production 2022, 339, 130634. <u>https://doi.org/10.1016/j.jclepro.2022.130634</u>
- [21] Wang, S.; Chen, X.; Fang, L.; Gao, H.; Han, M.; Chen, X.; Xia, Y.; Xie, L.; Yang, H. Double heterojunction CQDs/CeO₂/BaFe₁₂O₁₉ magnetic separation photocatalysts: Construction, structural characterization, dye and POPs removal, and the interrelationships between magnetism and photocatalysis. Nuclear Analysis 2022, 1(3), 100026. https://doi.org/10.1016/j.nucana.2022.100026
- [22] Pan, X.; Tang, S.; Chen, X.; Liu, H.; Yu, C.; Gao, Q.; Zhao, X.; Yang, H.; Gao, H.; Wang, S. Temperature-controlled synthesis of TiO₂ photocatalyst with different crystalline

phases and its photocatalytic activity in the degradation of different mixed dyes. Russian Journal of Physical Chemistry A 2022, 96, S210-S218. https://doi.org/10.1134/S0036024422140187

- [23] Tang, S.; Gao, H.; Wang, S.; Yu, C.; Chen, X.; Liu, H.; Gao, Q.; Yu, X.; Zhao, X.; Sun, G. Temperature dependence of the phase transformation and photoluminescence properties of metastable ZnWO₄ bano-phosphors with high UV absorption and VIS reflectance. Russian Journal of Physical Chemistry A 2022, 96, 515-526. https://doi.org/10.1134/S0036024422030220
- [24] Wang, S.; Tang, S.; Yang, H.; Wang, F.; Yu, C.; Gao, H.; Fang, L.; Sun, G.; Yi, Z.; Li, D. A novel heterojunction ZnO/CuO piezoelectric catalysts: fabrication, optical properties and piezoelectric catalytic activity for efficient degradation of methylene blue. Journal of Materials Science: Materials in Electronics 2022, 33, 7172-7190. https://doi.org/10.1007/s10854-022-07899-2
- [25] Gao, H.; Wang, S.; Wang, Y.; Yang, H.; Wang, F.; Tang, S.; Yi, Z.; Li, D. CaMoO₄/CaWO₄ heterojunction micro/nanocomposites with interface defects for enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 642, 128642.

https://doi.org/10.1016/j.colsurfa.2022.128642

- [26] Tang, S.; Gao, H.; Wang, S.; Fang, L.; Chen, X.; Yang, H.; Chen, X.; Liu, H.; Yi, Z. Piezoelectric catalytic, photocatalytic and adsorption capability and selectivity removal of various dyes and mixed dye wastewater by ZnO nanoparticles. Main Group Chemistry 2022, 21, 539-557. https://doi.org/10.3233/MGC-210150
- [27] Gao, H.; Tang, S.; Chen, X.; Yu, C.; Wang, S.; Fang, L.; Yu, X.; Zhao, X.; Sun, G.; Yang, H. Facile synthesis of cobalt tungstate with special defect structure with enhanced optical, photoluminescence, and supercapacitive performances. Russian Journal of Physical Chemistry A 2021, 95, S288-S295.

https://doi.org/10.1134/S0036024421150103

- [28] Gao, H.; Yu, C.; Wang, Y.; Wang, S.; Yang, H.; Wang, F.; Tang, S.; Yi, Z.; Li, D. A novel photoluminescence phenomenon in a SrMoO₄/SrWO₄ micro/nano heterojunction phosphors obtained by the polyacrylamide gel method combined with low temperature calcination technology. Journal of Luminescence 2022, 243, 118660. https://doi.org/10.1016/j.jlumin.2021.118660
- [29] Wang, S.; Gao, H.; Fang, L.; Hu, Q.; Sun, G.; Chen, X.; Yu, C.; Tang, S.; Yu, X.; Zhao, X.; Sun, G. *et al.* Synthesis of novel CQDs/CeO₂/SrFe₁₂O₁₉ magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chemical Engineering Journal Advances 2021, 6, 100089. https://doi.org/10.1016/j.ceja.2021.100089
- [30] Busca, G.; Lorenzelli, V.; Escribano, V.S.; Guidetti, R. FT-IR study of the surface properties of the spinels NiAl₂O₄ and CoAl₂O₄ in relation to those of transitional aluminas. Journal of Catalysis 1991, 131, 167-177. https://doi.org/10.1016/0021-9517(91)90333-Y
- [31] Bhavani, P.; Manikandan, A.; Paulraj, P.; Dinesh, A.; Durka, M.; Antony, S.A. Okra (Abelmoschus esculentus) plant extract-assisted combustion synthesis and characterization studies of spinel ZnAl₂O₄ nano-catalysts. Journal of Nanoscience and Nanotechnology 2018, 18(6), 4072-4081. <u>https://doi.org/10.1166/jnn.2018.15217</u>
- [32] Li, M.; Wang, S.; Gao, H.; Yin, Z.; Chen, C.; Yang, H.; Fang, L.; Veerabhadrappa, J.A.; Yi, Z.; Li, D. Selective removal of antibiotics over MgAl₂O₄/C₃N₄/YMnO₃ photocatalysts: Performance prediction and mechanism insight. Journal of the American Ceramic Society 2023, 106, 2420-2442. <u>https://doi.org/10.1111/jace.18946</u>
- [33] Wang, S.; Li, M.; Gao, H.; Yin, Z.; Chen, C.; Yang, H.; Fang, L.; Angadi, V.J.; Yi, Z.; Li, D. Construction of CeO₂/YMnO₃

and CeO₂/MgAl₂O₄/YMnO₃ photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight. Applied Surface Science 2023, 608, 154977. https://doi.org/10.1016/j.apsusc.2022.154977

- [34] Song, K.H.; Jeong, S.K.; Jeong, B.H.; Lee, K.Y.; Kim, H.J. Effect of the Ni/Al ratio on the performance of NiAl₂O₄ spinelbased catalysts for supercritical methylcyclohexane catalytic cracking. Catalysts 2021, 11, 323. <u>https://doi.org/10.3390/catal11030323</u>
- [35] Wang, S.; Li, M.; Yin, Z.; Gao, H.; Liu, H.; Yang, H.; Fang, L.; Angadi, V.J.; Hu, L.; Li, D. Skillfully grafted CO functional group to enhance the adsorption/photocatalytic mechanism of YMnO₃/MgAl₂O₄ heterojunction photocatalysts. Advanced Powder Technology 2022, 33, 103771. <u>https://doi.org/10.1016/j.apt.2022.103771</u>
- [36] Han, M.; Wang, S.; Chen, X.; Liu, H.; Gao, H.; Zhao, X.; Wang, F.; Yang, H.; Fang, L. Spinel CuB₂O₄ (B= Fe, Cr, and Al) oxides for selective adsorption of Congo red and photocatalytic removal of antibiotics. ACS Applied Nano Materials 2022, 5, 11194-11207. <u>https://doi.org/10.1021/acsanm.2c02349</u>
- [37] Gao, H.; Wang, S.; Fang, L.; Sun, G.; Chen, X.; Tang, S.; Yang, H.; Sun, G.; Li, D. Nanostructured spinel-type M (M= Mg, Co, Zn) Cr₂O₄ oxides: novel adsorbents for aqueous Congo red removal. Materials Today Chemistry 2021, 22, 100593. <u>https://doi.org/10.1016/i.mtchem.2021.100593</u>
- Liu, H.; Wang, S.; Gao, H.; Yang, H.; Wang, F.; Chen, X.; [38] Fang, L.; Tang, S.; Y, Z.; Li, D. A simple polyacrylamide gel route for the synthesis of MgAl₂O₄ nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation. equilibrium. kinetics and thermodynamic studies. Separation and Purification Technology 2022, 281, 119855. https://doi.org/10.1016/j.seppur.2021.119855
- [39] Wang, S.; Wei, X.; Gao, H.; Wei, Y. Effect of amorphous alumina and α-alumina on optical, color, fluorescence properties and photocatalytic activity of the MnAl₂O₄ spinel oxides. Optik 2019, 185, 301-310. <u>https://doi.org/10.1016/j.ijleo.2019.03.147</u>
- [40] Wang, S.; Gao, H.; Fang, L.; Wei, Y.; Li, Y.; Lei, L. Synthesis and characterization of BaAl₂O₄ catalyst and its photocatalytic activity towards degradation of methylene blue dye. Zeitschrift für Physikalische Chemie 2019, 233, 1161-1181. <u>https://doi.org/10.1515/zpch-2018-1308</u>

[41] Gao, H.; Yang, H.; Wang, S.; Zhao, X. Optical and electrochemical properties of perovskite type MAIO₃ (M= Y, La, Ce) pigments synthesized by a gamma-ray irradiation assisted polyacrylamide gel route. Ceramics International

2018, 44, 14754-14766. https://doi.org/10.1016/i.ceramint.2018.05.105

- [42] Gao, H.; Yang, H.; Wang, S.; Li, D.; Wang, F.; Fang, L.; Lei, L.; Xiao, Y.; Yang, G. A new route for the preparation of CoAl₂O₄ nanoblue pigments with high uniformity and its optical properties. Journal of Sol-Gel Science and Technology 2018, 86, 206-216. <u>https://doi.org/10.1007/s10971-018-4609-γ</u>
- [43] Li, Q.; Wang, S.; Yuan, Y.; Gao, H.; Xiang, X. Phasecontrolled synthesis, surface morphology, and photocatalytic activity of the perovskite AIFeO₃. Journal of Sol-Gel Science and Technology 2017, 82, 500-508. <u>https://doi.org/10.1007/s10971-017-4325-z</u>
- [44] Wang, S.; Sun, G.; Fang, L.; Lei, L.; Xiang, X.; Zu, X. A comparative study of ZnAl₂O₄ nanoparticles synthesized from different aluminum salts for use as fluorescence materials. Scientific reports 2015, 5, 12849. https://doi.org/10.1038/srep12849
- [45] Wang, S.; Zhang, C.; Sun, G.; Chen, B.; Xiang, X.; Wang, H.; Fang, L.; Tian, Q.; Ding, Q.; Zu, X. Fabrication of a novel light

emission material $AIFeO_3$ by a modified polyacrylamide gel route and characterization of the material. Optical Materials 2013, 36, 482-488.

https://doi.org/10.1016/j.optmat.2013.10.014

- [46] Wang, S.; Gao, H.; Wei, Y.; Li, Y.; Yang, X.; Fang, L.; Lei, L. Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N-O and C-O functional groups decorating spinel type magnesium aluminate. CrystEngComm 2019, 21, 263-277. <u>https://doi.org/10.1039/C8CE01474D</u>
- [47] Wang, S.; Gao, H.; Yu, H.; Li, P.; Li, Y.; Chen, C.; Wang, Y.; Yang, L.; Yin, Z. Optical and photoluminescence properties of the MgAl₂O₄: M (M= Ti, Mn, Co, Ni) phosphors: calcination behavior and photoluminescence mechanism. Transactions of the Indian Ceramic Society 2020, 79, 221-231. https://doi.org/10.1080/0371750X.2020.1817789
- [48] Liu, X.; Wang, S.; Yu, X.; Tang, S.; Fang, L.; Lei, L. Fabrication and photoluminescence properties of MgAl₂O₄: Mg phosphors. Chinese Journal of Materials Research 2020, 34, 784-792. https://doi.org/10.11901/1005.3093.2020.072
- [49] Wang, S.; Gao, H.; Chen, C.; Wei, Y.; Zhao, X. Irradiation assisted polyacrylamide gel route for the synthesize of the Mg_{1-x}Co_xAl₂O₄ nano-photocatalysts and its optical and photocatalytic performances. Journal of Sol-Gel Science and Technology 2019, 92, 186-199. https://doi.org/10.1007/s10971-019-05062-8
- [50] Wang, S.; Gao, H.; Li, J.; Wang, Y.; Chen, C.; Yu, X.; ang, S.; Zhao, X.; Sun, G.; Li, D. Comparative study of the photoluminescence performance and photocatalytic activity of CeO₂/MgAl₂O₄ composite materials with an nn heterojunction prepared by one-step synthesis and two-step synthesis methods. Journal of Physics and Chemistry of Solids 2021, 150, 109891. https://doi.org/10.1016/i.jpcs.2020.109891
- [51] Li, J.; Wang, S.; Sun, G.; Gao, H.; Yu, X.; Tang, S.; Zhao, X.; Yi, Z.; Wang, Y.; Wei, Y. Facile preparation of MgAl₂O₄/CeO₂/Mn₃O₄ heterojunction photocatalyst and enhanced photocatalytic activity. Materials Today Chemistry 2021, 19, 100390. https://doi.org/10.1016/j.mtchem.2020.100390
- [52] Wang, S.; Wang, Y.; Gao, H.; Li, J.; Fang, L.; Yu, X.; Tang, S.; Zhao, X.; Sun, G. Synthesis and characterization of BaAl₂O₄: Ce and Mn-Ce-co-doped BaAl₂O₄ composite materials by a modified polyacrylamide gel method and prediction of photocatalytic activity using artificial neural network (ANN) algorithm. Optik 2020, 221, 165363. <u>https://doi.org/10.1016/j.ijleo.2020.165363</u>
- [53] Wang, S.; Gao, H.; Sun, G.; Wang, Y.; Fang, L.; Yang, L.; Lei, L.; Wei, Y. Synthesis of visible-light-driven SrAl₂O₄based photocatalysts using surface modification and ion doping. Russian Journal of Physical Chemistry A 2020, 94, 1234-1247. https://doi.org/10.1134/S003602442006031X
- [54] Wang, Y.; Wang, S.; Yu, X.; Tang, S.; Han, S.; Yang, L. Irradiation synthesis and characterization of CoAl₂O₄: Ce and Mn-codoped CoAl₂O₄: Ce phosphors. Optik 2020, 210, 164508. <u>https://doi.org/10.1016/j.ijleo.2020.164508</u>
- [55] Chen, C.; Li, Q.; Zhang, Q.; Li, Y.; Wei, Y.; Wang, S. Artificial neural network algorithm for predict the photocatalytic activity of the Mn co-doped MgAl₂O₄: Ce composite photocatalyst. In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP) IEEE 2019, 1-5. <u>https://doi.org/10.1109/ICSIDP47821.2019.9173359</u>
- [56] Wang, S.; Chen, C.; Li, Y.; Zhang, Q.; Li, Y.; Gao, H. Synergistic effects of optical and photoluminescence properties, charge transfer, and photocatalytic activity in MgAl₂O₄: Ce and Mn-codoped MgAl₂O₄: Ce phosphors. Journal of Electronic Materials 2019, 48, 6675-6685. https://doi.org/10.1007/s11664-019-07479-x

 [57] Wang, S.; Li, D.; Xiao, Y. Experimental study of structural, surface morphology, optical and luminescence properties of MAl₂O₄/Al₂O₃ (M= Co, Ni) composites. Optik 2018, 162, 172-181. https://doi.org/10.1016/j.ijleo.2018.02.071

[58] Sadek, H.E.; Khattab, R.M.; Gaber, A.A.; Zawrah, M.F. Nano Mg_{1-x}Ni_xAl₂O₄ spinel pigments for advanced applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 125, 353-358.

https://doi.org/10.1016/j.saa.2014.01.115

[59] Irshad, A.; Warsi, M.F.; Agboola, P.O.; Dastgeer, G.; Shahid, M. Sol-gel assisted Ag doped NiAl₂O₄ nanomaterials and their nanocomposites with g-C₃N₄ nanosheets for the removal of organic effluents. Journal of Alloys and Compounds 2022, 902, 163805.

- [60] Medina, F.; Sueiras, J.E.; Cesteros, Y.; Salagre, P. Simple synthesis and characterization of several nickel catalytic precursors. Journal of chemical education 2002, 79, 489. https://doi.org/10.1021/ed079p489
- [61] Komeili, S.; Taeb, A.; Takht Ravanchi, M.; Rahimi Fard, M. The properties of nickel aluminate nanoparticles prepared by sol-gel and impregnation methods. Research on Chemical Intermediates 2016, 42, 7909-7921. <u>https://doi.org/10.1007/s11164-016-2568-x</u>
- [62] Bayal, N.; Jeevanandam, P. Synthesis of metal aluminate nanoparticles by sol-gel method and studies on their reactivity. Journal of Alloys and Compounds 2012, 516, 27-32. https://doi.org/10.1016/j.jallcom.2011.11.080
- [63] Benrabaa, R.; Barama, A.; Boukhlouf, H.; Guerrero-Caballero, J.; Rubbens, A.; Bordes-Richard, E.; Vannier, N. Physics chemical matrices and comparison of the second sec
- Caballero, J.; Rubbens, A.; Bordes-Richard, E.; Vannier, R.N. Physico-chemical properties and syngas production via dry reforming of methane over NiAl₂O₄ catalyst. International Journal of Hydrogen Energy 2017, 42, 12989-12996. <u>https://doi.org/10.1016/j.ijhydene.2017.04.030</u>
- [64] Leal, E.; de Melo Costa, A.C.; de Freita, N.L.; de Lucena Lira, H.; Kiminami, R.H.; Gama, L. NiAl₂O₄ catalysts prepared by combustion reaction using glycine as fuel. Materials Research Bulletin 2011, 46, 1409-1413. <u>https://doi.org/10.1016/j.materresbull.2011.05.011</u>
- [65] Venkataramana, C.; Botsa, S.M.; Shyamala, P.; Muralikrishna, R. Photocatalytic degradation of polyethylene plastics by NiAl₂O₄ spinels-synthesis and characterization. Chemosphere 2021, 265, 129021. <u>https://doi.org/10.1016/j.chemosphere.2020.129021</u>
- [66] Yancheshmeh, M.S.; Sahraei, O.A.; Aissaoui, M.; Iliuta, M.C. A novel synthesis of NiAl₂O₄ spinel from a Ni-Al mixed-metal alkoxide as a highly efficient catalyst for hydrogen production by glycerol steam reforming. Applied Catalysis B: Environmental 2020, 265, 118535. <u>https://doi.org/10.1016/j.apcatb.2019.118535</u>
- [67] Jeevanandam, P.; Koltypin, Y.; Gedanken, A. Preparation of nanosized nickel aluminate spinel by a sonochemical method. Materials Science and Engineering: B 2002, 90, 125-132. https://doi.org/10.1016/S0921-5107(01)00928-X
- [68] Gama, L.; Ribeiro, M.A.; Barros, B.S.; Kiminami, R.H.; Weber, I.T.; Costa, A.C. Synthesis and characterization of the NiAl₂O₄, CoAl₂O₄ and ZnAl₂O₄ spinels by the polymeric precursors method. Journal of Alloys and Compounds 2009, 483, 453-455. https://doi.org/10.1016/j.jallcom.2008.08.111
- [69] Han, Y.S.; Li, J.B.; Ning, X.S.; Chi, B. Effect of preparation temperature on the lattice parameter of nickel aluminate spinel. Journal of the American Ceramic Society 2004, 87, 1347-1349. <u>https://doi.org/10.1111/j.1151-2916.2004.tb07733.x</u>
- [70] Davar, F.; Salavati-Niasari, M. Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol-gel method using new precursor. Journal of Alloys and Compounds 2011, 509, 2487-2492.

https://doi.org/10.1016/j.jallcom.2010.11.058

- [71] Kunde, G.B.; Sehgal, B. Application of sol-gel assisted ultrasound-induced atomization in the mesostructuring of nickel aluminate UF membranes. Microporous and Mesoporous Materials 2021, 325, 111299. <u>https://doi.org/10.1016/j.micromeso.2021.111299</u>
- [72] Maddahfar, M.; Ramezani, M.; Sadeghi, M.; Sobhani-Nasab, A. NiAl₂O₄ nanoparticles: synthesis and characterization through modify sol-gel method and its photocatalyst application. Journal of Materials Science: Materials in Electronics 2015, 26, 7745-7750. https://doi.org/10.1007/s10854-015-3419-z
- [73] Zhang, S.; Ying, M.; Yu, J.; Zhan, W.; Wang, L.; Guo, Y.; Guo, Y. Ni_xAl₁O_{2-δ} mesoporous catalysts for dry reforming of methane: The special role of NiAl₂O₄ spinel phase and its reaction mechanism. Applied Catalysis B: Environmental 2021, 291, 120074. <u>https://doi.org/10.1016/j.apcatb.2021.120074</u>
- [74] Abdulmajeed, I.M.; Mahdi, D.K.; Ibraheem, S.H. Structural characterization of nickel and zinc aluminate prepared by solgel technique. In AIP Conference Proceedings 2021, 2372, 100005

https://doi.org/10.1063/5.0066247

- [75] de Melo Costa, A.C.; Diniz, A.P.; Gama, L.; Morelli, M.R.; Kiminami, R.H. Comparison of Ni-Zn ferrite powder preparation by combustion reaction using different synthesization routes. In Journal of Metastable and Nanocrystalline Materials 2004, 20, 582-587. https://doi.org/10.4028/www.scientific.net/JMNM.20-21.582
- [76] Visinescu, D.; Jurca, B.; Ianculescu, A.; Carp, O. Starch–A suitable fuel in new low-temperature combustion-based synthesis of zinc aluminate oxides. Polyhedron 2021, 30, 2824-2831. https://doi.org/10.1016/j.poly.2011.08.006
- [77] Patil, K.C.; Aruna, S.T.; Ekambaram, S. Combustion synthesis. Current opinion in solid state and materials science 1997, 2, 158-165. <u>https://doi.org/10.1016/S1359-0286(97)80060-5</u>
- [78] Kingsley, J.J.; Patil, K.C. A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Materials letters 1988, 6, 427-432. https://doi.org/10.1016/0167-577X(88)90045-6
- [79] Stella, K.C.; Nesaraj, A.S. Effect of fuels on the combustion synthesis of NiAl₂O₄ spinel particles. Iranian Journal of Materials Science & Engineering 2010, 7, 36-44. chromeextension://ibllepbpahcoppkjjllbabhnigcbffpi/https://citeseerx.i st.psu.edu/document?repid=rep1&type=pdf&doi=b7e90efc77 e1c22033e720a0e300b97093cd0f68
- [80] Ragupathi, C.; Vijaya, J.J.; Surendhar, P.; Kennedy, L.J. Comparative investigation of nickel aluminate (NiAl₂O₄) nano and microstructures for the structural, optical and catalytic properties. Polyhedron 2014, 72, 1-7. http://dx.doi.org/10.1016/j.poly.2014.01.013
- [81] Ragupathi, C.; Vijaya, J.J.; Kennedy, L.J. Synthesis, characterization of nickel aluminate nanoparticles by microwave combustion method and their catalytic properties. Materials Science and Engineering: B 2014, 184, 18-25. <u>https://doi.org/10.1016/j.mseb.2014.01.010</u>
- [82] Manikandan, A.; Antony, S. A novel approach for the synthesis and characterization studies of Mn-doped CdS nanocrystals by a facile microwave-assisted combustion method. Journal of Superconductivity & Novel Magnetism 2014, 27, 2725-2733. https://doi.org/10.1007/s10948-014-2634-9
- [83] Sivakumar, P.; Ramesh, R.; Ramanand, A.; Ponnusamy, S.; Muthamizhchelvan, C. Preparation and properties of nickel ferrite (NiFe₂O₄) nanoparticles via sol-gel auto-combustion method. Materials Research Bulletin 2011, 46, 2204-2207. <u>https://doi.org/10.1016/j.materresbull.2011.09.010</u>

[84] Yue, Z.; Zhou, J.; Li, L.; Zhang, H.; Gui, Z. Synthesis of

nanocrystalline NiCuZn ferrite powders by sol-gel autocombustion method. Journal of Magnetism and Magnetic Materials 2000, 208, 55-60. https://doi.org/10.1016/S0304-8853(99)00566-1

- [85] Slatineanu, T.; Iordan, A.R.; Palamaru, M.N.; Caltun, O.F.; Gafton, V.; Leontie, L. Synthesis and characterization of nanocrystalline Zn ferrites substituted with Ni. Materials Research Bulletin 2011, 46, 1455-1460. https://doi.org/10.1016/j.materresbull.2011.05.002
- [86] Tangcharoen, T.; Klysubun, W.; Kongmark, C. Synchrotron X-ray absorption spectroscopy and cation distribution studies of NiAl₂O₄, CuAl₂O₄, and ZnAl₂O₄ nanoparticles synthesized by sol-gel auto combustion method. Journal of Molecular Structure 2019, 1182, 219-229. https://doi.org/10.1016/j.molstruc.2019.01.049
- [87] Tangcharoen, T.; T-Thienprasert, J.; Kongmark, C. Optical properties and versatile photocatalytic degradation ability of MAl₂O₄ (M= Ni, Cu, Zn) aluminate spinel nanoparticles. Journal of Materials Science: Materials in Electronics 2018, 29, 8995-9006. https://doi.org/10.1007/s10854-018-8924-4
- [88] Chen, C.; Wang, L.; Li, R.; Jiang, G.; Yu, H.; Chen, T. Effect of silver nanowires on electrical conductance of system composed of silver particles. Journal of Materials Science 2007, 42, 3172-3176. https://doi.org/10.1007/s10853-007-1594-x
- [89] Irshad, A.; Somaily, H.H.; Zulfiqar, S.; Warsi, M.F.; Din, M.I.; Chaudhary, K.; Shahid, M. Silver doped NiAl₂O₄ nanoplates anchored onto the 2D graphitic carbon nitride sheets for high-performance supercapacitor applications. Journal of Alloys and Compounds 2023, 934, 167705. <u>https://doi.org/10.1016/i.jallcom.2022.167705</u>
- [90] Elakkiya, V.; Agarwal, Y.; Sumathi, S. Photocatalytic activity of divalent ion (copper, zinc and magnesium) doped NiAl₂O₄. Solid State Sciences 2018, 82, 92-98. <u>https://doi.org/10.1016/j.solidstatesciences.2018.06.008</u>
- [91] Akika, F.Z.; Benamira, M.; Lahmar, H.; Tibera, A.; Chabi, R.; Avramova, I.; Suzer, S.; Trari, M. Structural and optical properties of Cu-substitution of NiAl₂O₄ and their photocatalytic activity towards Congo red under solar light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2018, 364, 542-550. https://doi.org/10.1016/j.jphotochem.2018.06.049
- [92] Regulska, E.; Breczko, J.; Basa, A.; Niemirowicz-Laskowska, K.; Kiszkiel-Taudul, I. Photocatalytic degradation of oxytetracycline with the REMs (Er, Tm, Yb)-doped nickel and copper aluminates. Materials Science and Engineering: B 2022 ,285, 115959. <u>https://doi.org/10.1016/j.mseb.2022.115959</u>
- [93] Dhara, A.; Sain, S.; Ray, A.; Das, S.; Kumar Pradhan, S. Microstructure analysis, optical, and electrical transport properties of NiAl₂O₄/Al₂O₃ nanocomposite powder. Physica Status Solidi (a) 2022, 219, 2200386. https://doi.org/10.1002/pssa.202200386
- [94] Arunkumar, M.; Nesaraj, A.S.; Christy, C.E.; Kennady, C.J. Enhanced photocatalytic efficiency of soft chemically synthesized MAl₂O₄/activated carbon based composite in the removal of toxic malachite green dye under visible light. Research Square 2021. <u>https://doi.org/10.21203/rs.3.rs-697853/v1</u>
- [95] Kunde, G.B.; Sehgal, B.; Ganguli, A.K. Modified EISA synthesis of NiAl₂O₄/MWCNT composite mesoporous freestanding film as a potential electrochemical capacitor material. Journal of Alloys and Compounds 2021, 856, 158019. https://doi.org/10.1016/j.jallcom.2020.158019
- [96] Muralidharan, P.; Prakash, I.; Venkateswarlu, M.; Satyanarayana, N. Sol-gel synthesis and structural characterization of nanocomposite powder: NiAl₂O₄: SiO₂. Nanotech 2004, 3, 327-329. www.nsti.org, ISBN 0-9728422-9-2

- [97] Ahmad, N.; Kuo, C.F.; Mustaqeem, M.; Hussien, M.K.; Chen, K.H. Improved photocatalytic activity of novel NiAl₂O₄/g-C₃N₄ binary composite for photodegradation of 2, 4-dinitrophenol and CO₂ reduction via gas phase adsorption. Materials Today Physics 2023, 100965. <u>https://doi.org/10.1016/j.mtphys.2023.100965</u>
- [98] Regulska, E.; Breczko, J.; Basa, A. Pristine and graphenequantum-dots-decorated spinel nickel aluminate for water remediation from dyes and toxic pollutants. Water 2019, 11, 953. https://doi.org/10.3390/w11050953
- [99] Peña, J.A.; Rodríguez, J.C.; Herguido, J.; Santamaría, J.; Monzón, A. Influence of the catalyst pretreatment on the relative rates of the main and coking reactions during acetylene hydrogenation on a NiO/NiAl₂O₄ catalyst. In Studies in Surface Science and Catalysis 1994, 88, 555-560. <u>https://doi.org/10.1016/S0167-2991(08)62787-1</u>
- [100] Numaguchi, T.; Eida, H.; Shoji, K. Reduction of NiAl₂O₄ containing catalysts for steam methane reforming reaction. International journal of hydrogen energy 1997, 22, 1111-1115. <u>https://doi.org/10.1016/S0360-3199(97)00007-4</u>
- [101] Cesteros, Y.; Salagre, P.; Medina, F.; Sueiras, J.E. Synthesis and characterization of several Ni/NiAl₂O₄ catalysts active for the 1, 2, 4-trichlorobenzene hydrodechlorination. Applied Catalysis B: Environmental 2000, 25, 213-227. https://doi.org/10.1016/S0926-3373(99)00133-2
- [102] Kou, L.; Selman, J.R. Activity of NiAl₂O₄ catalyst for steam reforming of methane under internal reforming fuel cell conditions. ECS Proceedings Volumes, 1999, 19, 640. <u>https://doi.org/10.1149/199919.0640PV</u>
- [103] Pena, J.A.; Herguido, J.; Guimon, C.; Monzón, A.; Santamaría, J. Hydrogenation of acetylene over Ni/NiAl₂O₄ catalyst: Characterization, coking, and reaction studies. Journal of Catalysis 1996, 159, 313-322. https://doi.org/10.1006/jcat.1996.0093
- [104] Zhang, X.; Yu, L.; Zhuang, C.; Peng, T.; Li, R.; Li, X. Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H₂ production under near-infrared light. ACS Catalysis 2014, 4, 162-170. https://doi.org/10.1021/cs400863c
- [105] Chan, Y.T.; Wu, C.H.; Shen, P.; Chen, S.Y. Nickel aluminate oxides/hydroxides by pulsed laser ablation of NiAl₂O₄ powder in water. Applied Physics A 2014, 116, 1065-1073. <u>https://doi.org/10.1007/s00339-013-8183-4</u>
- [106] Salleh, N.F.; Jalil, A.A.; Triwahyono, S.; Efendi, J.; Mukti, R.R.; Hameed, B.H. New insight into electrochemicalinduced synthesis of NiAl₂O₄/Al₂O₃: Synergistic effect of surface hydroxyl groups and magnetism for enhanced adsorptivity of Pd (II). Applied Surface Science 2015, 349, 485-495. https://doi.org/10.1016/j.apsusc.2015.05.048
- [107] Arunkumar, M.; Nesaraj, A.S. One pot chemical synthesis of ultrafine NiAl₂O₄ nanoparticles: physico-chemical properties and photocatalytic degradation of organic dyes under visible light irradiation. Inorganic and Nano-Metal Chemistry 2021, 51, 910-917. https://doi.org/10.1080/24701556.2020.1813173
- [108] Gayathri, R.C.; Elakkiya, V.; Sumathi, S. Synthesis of cerium and bismuth doped nickel aluminate for the photodegradation of methylene blue, methyl orange and rhodamine B dyes. Chemosphere 2022, 303, 135056. https://doi.org/10.1016/j.chemosphere.2022.135056
- [109] Bakhtiarvand, S.; Hassanzadeh Tabrizi, S.A. Polymerassisted synthesis and characterization of nickel aluminate nanoparticles for photodegradation of methylene blue. Journal of Advanced Materials and Processing 2021, 9, 13-22.

ttps://journals.iau.ir/article_688905_5bd7e638eadb36538eb0 62478581f07f.pdf

- [110] Rahimi-Nasrabadi, M.; Ahmadi, F.; Eghbali-Arani, M. Different morphologies fabrication of NiAl₂O₄ nanostructures with the aid of new template and its photocatalyst application. Journal of Materials Science: Materials in Electronics 2017, 28, 2415-2420. https://doi.org/10.1007/s10854-016-5812-7
- [111] Nandana, B.; Dedhila, D.; Baiju, V.; Sajeevkumar, G. NiAl₂O₄ nanocomposite via combustion synthesis for sustainable environmental remediation. Nanosistemi, Nanomateriali, Nanotehnolog 2022, 20, 459-472. chromeextension://ibllepbpahcoppkjjllbabhnigcbffpi/https://www.imp. kiev.ua/nanosys/media/pdf/2022/2/nano_vol20_iss2_p0459p 0472_2022.pdf
- [112] Arunkumar, M.; Samson Nesaraj, A. Photocatalytic degradation of malachite green dye using NiAl₂O₄ and Co doped NiAl₂O₄ nanophotocatalysts prepared by simple one pot wet chemical synthetic route. Iranian Journal of Catalysis 2020, 10, 235-245. https://journals.iau.ir/article_675392_e95b6d9a6e14ac173fe8 3940f1a24a79.pdf
- [113] Liang, H.; Zhu, C.; Wang, A.; Palanisamy, K.; Chen, F. Facile synthesis of NiAl₂O₄/g-C₃N₄ composite for efficient photocatalytic degradation of tetracycline. Journal of Environmental Sciences 2023, 127, 700-713. <u>https://doi.org/10.1016/j.jes.2022.06.032</u>
- [114] Ramos-Ramírez, E.; Gutiérrez-Ortega, N.L.; Tzompantzi-Morales, F.; Barrera-Rodríguez, A.; Castillo-Rodríguez, J.C.; Tzompantzi-Flores, C.; Santolalla-Vargas, C.; Guevara-Hornedo, M.D. Photocatalytic degradation of 2, 4-Dichlorophenol on NiAl-mixed oxides derivatives of activated layered double hydroxides. Topics in Catalysis 2020, 63, 546-563. https://doi.org/10.1007/s11244-020-01269-0

<u>https://doi.org/10.1007/s11244-020-01269-0</u>

- [115] Suguna, S.; Shankar, S.; Jaganathan, S.K.; Manikandan, A. Novel synthesis and characterization studies of spinel Ni_xCo_{1-x}Al₂O₄ (x= 0.0 to 1.0) nano-catalysts for the catalytic oxidation of benzyl alcohol. Journal of Nanoscience and Nanotechnology 2018, 18, 1019-1026. https://doi.org/10.1166/jnn.2018.13960
- [116] Boukha, Z.; Jiménez-González, C.; Gil-Calvo, M.; de Rivas, B.; González-Velasco, J.R.; Gutiérrez-Ortiz, J.I.; López-Fonseca, R. MgO/NiAl₂O₄ as a new formulation of reforming catalysts: Tuning the surface properties for the enhanced partial oxidation of methane. Applied Catalysis B: Environmental 2016, 199, 372-383. https://doi.org/10.1016/j.apcatb.2016.06.045
- [117] Gil-Calvo, M.; Jimenez-Gonzalez, C.; de Rivas, B.; Gutiérrez-Ortiz, J.I.; Lopez-Fonseca, R. Effect of Ni/Al molar ratio on the performance of substoichiometric NiAl₂O₄ spinel-based catalysts for partial oxidation of methane. Applied Catalysis B: Environmental 2017, 209, 128-138. https://doi.org/10.1016/j.apcatb.2017.02.063
- [118] López-Fonseca, R.; Jiménez-González, C.; de Rivas, B.; Gutiérrez-Ortiz, J.I. Partial oxidation of methane to syngas on bulk NiAl₂O₄ catalyst. Comparison with alumina supported nickel, platinum and rhodium catalysts. Applied Catalysis A: General 2012, 437, 53-62. https://doi.org/10.1016/j.apcata.2012.06.014

Received on 10-03-2023

Accepted on 14-04-2023

Published on 18-04-2023

DOI: https://doi.org/10.12974/2311-8741.2023.11.02

© 2023 Xinmiao Yu et al.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (<u>http://creativecommons.org/licenses/by-nc/3.0/</u>) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

and origin in aqueous-phase reforming of methanol. ACS Catalysis 2019, 9, 9671-9682. https://doi.org/10.1021/acscatal.9b02243

- [120] Bouallouche, R.; Kebir, M.; Nasrallah, N.; Hachemi, M.; Amrane, A.; Trari, M. Enhancement of photocatalytic reduction of Cr (VI) using the hetero-system NiAl₂O₄/ZnO under visible light. Algerian Journal of Environmental Science and Technology 2019, 5. http://aljest.org/index.php/aljest/article/view/24/24
- [121] Saati, M.M.; Hamidi, S.; Jarolmasjed, N.; Rezvani, Z.; Davari, S. Removal of direct red 23 dye using CeO₂/NiO/NiAl₂O₄ nanocomposite: Mechanism, kinetic, thermodynamic, and equilibrium studies. Analytical and Bioanalytical Chemistry Research 2023, 10, 45-62. <u>https://doi.org/10.22036/ABCR.2022.348535.1788</u>
- [122] Sebai, I.; Salhi, N.; Rekhila, G.; Trari, M. Visible light induced H₂ evolution on the spinel NiAl₂O₄ prepared by nitrate route. International Journal of hydrogen energy 2017, 42, 26652-26658. https://doi.org/10.1016/j.ijhydene.2017.09.092
- [123] Li, Q.; Yang, Y.; Lu, S.; Bai, X.; Zhang, Y.; Shi, L.; Ling, C.; Wang, J. Perspective on theoretical methods and modeling relating to electro-catalysis processes. Chemical Communications 2020, 56, 9937-9949. https://doi.org/10.1039/D0CC02998J
- [124] Han, Y.; Wang, S.; Li, M.; Gao, H.; Han, M.; Yang, H.; Fang, L.; Angadi, J.V.; Rehim, A.A.; Ali, A.M.; Li, D. Strontiuminduced phase, energy band and microstructure regulating in Ba_{1-x}Sr_xTiO₃ photocatalysts for boosting visible-light photocatalytic activity. Catalysis Science & Technology 2023, Accepted. https://doi.org/10.1039/D3CY00278K
- [125] Sivakumar, M.; Pandi, K.; Chen, S.W.; Yadav, S.; Chen, T.W.; Veeramani, V. Highly sensitive detection of gallic acid in food samples by using robust NiAl₂O₄ nanocomposite materials. Journal of the Electrochemical Society 2019, 166, B29. https://doi.org/10.1149/2.0121902jes
- [126] Aman, S.; Farid, H.M.; Manzoor, S.; Ashiq, M.N.; Khosa, R.Y.; Elsayed, K.A.; Mahmoud, K.H.; Taha, T.A.; Waheed, M.S.; Abdullah, M. High performance graphene oxide/NiAl₂O₄ directly grown on carbon cloth hybrid for oxygen evolution reaction. International Journal of Hydrogen Energy 2022; 47
 - directly grown on carbon cloth hybrid for oxygen evolution reaction. International Journal of Hydrogen Energy 2022; 47, 34299-34311. https://doi.org/10.1016/i.iihydene.2022.08.033
- [127] Al-Dahawi, A.; Öztürk, O.; Emami, F.; Yıldırım, G.; Şahmaran, M. Effect of mixing methods on the electrical properties of cementitious composites incorporating different carbonbased materials. Construction and Building Materials 2016, 104, 160-168.

https://doi.org/10.1016/j.conbuildmat.2015.12.072

[128] Regulska, E.; Breczko, J.; Basa, A.; Szydlowska, B.; Kakareko, K.; Rydzewska-Rosołowska, A.; Hryszko, T. Graphene-quantum-dots-decorated NiAl₂O₄ nanostructure as supercapacitor and electrocatalyst in biosensing. Materials Today Communications 2022, 33, 104166. <u>https://doi.org/10.1016/j.mtcomm.2022.104166</u>