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Abstract: Nickel aluminate (NiAl2O4) is a kind of partially antispinel structure oxide. Because of its excellent electronic 
structure and energy level structure, high thermal stability and high charge transfer and separation efficiency, it has a 
potential application prospect in catalytic oxidation, photocatalysis, adsorption and other fields. In this paper, the 
synthesis methods of different NiAl2O4-based catalysts, their applications in catalytic field and related catalytic 
mechanisms are reviewed from the appearance of single component NiAl2O4, ion-doped NiAl2O4 and multiheterojunction 
NiAl2O4 catalysts. The application of NiAl2O4 photocatalysts in the field of photocatalysis has gradually shifted from the 
degradation of dyes to the degradation of drugs, so its photocatalytic mechanism and degradation path need to be 
further studied. This review points out the direction for the future research of NiAl2O4 based catalysts in the field of 
catalysis. 

Keywords: Nickel aluminate, Catalytic oxidation, Photocatalysis, Catalytic mechanism, Photocatalysts. 

1. INTRODUCTION 

Catalyst is a kind of substance that can degrade 
other difficult substances without changing its crystal 
structure, electronic structure, energy level structure 
and its own properties [1-5]. Depending on the nature 
of the catalyst itself, it can be used in adsorption, 
photocatalysis, piezoelectric catalysis, thermocatalysis, 
catalytic oxidation, biodegradation and other fields [6-
13]. These catalysts may be single-component oxides 
or multicomponent compounds. Their homogeneous 
characteristics are relatively stable and do not 
decompose under acid, base or other conditions [14-
20]. They can have both magnetic and 
photoluminescence properties and other properties, 
especially excellent magnetic properties can make the 
photocatalyst with high ability of recycling and reducing 
secondary pollution of water bodies [21-29]. 

Spinel aluminate is a kind of common catalyst, 
because of their special physical and chemical 
properties such as good thermal stability, low surface 
acidity, mechanical resistance and water transport, so 
that they have a wide range of applications in ceramic 
pigments, magnetic devices, refractories, luminous 
devices, catalysts and other fields [30-35]. Spinel 
structure oxides generally have the general structure of 
AB2O4, where A=Mg, Ca, Sr, Ba, Mn, Fe, Cu, et. B=Al, 
Fe, Cr, et al. [36-38]. Single-component aluminates are 
stable and have high charge carrier migration and 
separation efficiency, so they have potential 
applications in pigments, catalysis and light-emitting 
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devices [39-45]. However, due to the large band gap 
value of aluminate, its application in the field of 
catalysis is limited. Therefore, surface modification, 
[46-48] ion doping [49] and heterogeneous structure 
construction [50-57] are used to enhance its physical 
and chemical properties. 

Nickel aluminate (NiAl2O4) is a kind of spinel 
aluminate with partial antispinel structure, which is a 
special kind of spinel aluminate [58]. This special 
structure makes NiAl2O4 lattice easy to produce 
vacancies, defects and other special structures, but 
does not affect its high stability, so it has been favored 
by researchers in the field of catalysis [59-61]. It is 
worth noting that different synthesis methods tend to 
affect the physicochemical properties of NiAl2O4. 
Therefore, it is of great significance to review the 
application of NiAl2O4 and NiAl2O4 based catalysts in 
the field of catalysis from the synthesis methods. 

In this paper, the synthesis methods of NiAl2O4, ion-
doped NiAl2O4 and heterojunction NiAl2O4 based 
catalysts are reviewed. The effect of synthesis method 
on the catalytic activity of NiAl2O4 based catalysis is 
discussed. Based on different types of NiAl2O4 based 
catalysts, its applications in photocatalytic degradation 
of dyes, pharmaceuticals, catalytic oxidation of 
methanol, adsorption, and other fields are reviewed in 
detail. This review will provide technical reference and 
theoretical guidance for the future research of NiAl2O4 
based catalysts in the field of catalysis. 

2. SYNTHESIS OF NICKEL ALUMINATE BASED 
CATALYST 

2.1. Synthesis of Nickel Aluminate Catalyst 

When preparing spinel aluminate, different 
preparation methods will affect the morphology, particle 
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size and crystal structure of the synthetic material, and 
also directly affect its optical properties and catalytic 
properties. At present, the preparation methods of 
nickel aluminate are mainly sol-gel method, [62] 
coprecipitation method, [63] combustion method, [64] 
hydrothermal method, [65] solvothermal method, [66] 
acoustochemical method, [67] polymer solution 
method, [68] solid state reaction method, [69] and so 
on. 

Sol-gel method is a commonly used method to 
prepare spinel aluminate. Compared with other 
methods, it can synthesize ultrafine particles with 
uniform particle size distribution at a lower temperature, 
[70] but the synthesis time is relatively long. Kunde et 
al. [71] successfully prepared spinel NiAl2O4 film by 
combining sol-gel method with ultrasonic induced 
atomization technology, as shown in Figure 1. 
Maddahfar et al. [72] synthesized NiAl2O4 by modified 
sol-gel method, and studied the effects of different 
chelating agents (citric acid monohydrate, oxalic acid, 
salicylic acid and malic acid) on the morphology, 
particle size and crystal structure of the synthetic 
materials. The photocatalytic activity of NiAl2O4 on the 
photocatalytic degradation of methyl orange (MO) was 
also studied. The results showed that all the samples 

were spherical and the best chelating agent was oxalic 
acid. Zhang et al. [73] prepared NiAl2O4 using citric 
acid as chelating agent by sol-gel method, and 
adjusted the size of NiAl2O4 nanoparticles by adjusting 
the content of Ni. Jeevanandam et al. [62] prepared 
spinel NiAl2O4 by sol-gel method, and observed that 
the calcination temperature would affect the formation 
and grain size of aluminate nanoparticles. Abdulmajeed 
et al. [74] synthesized spinel NiAl2O4 by sol-gel 
method, and measured the obtained samples with 
different measurement methods. The experiment 
showed that the calcination temperature would affect 
the grain size, and the particle size would increase with 
the increasing of temperature. 

Combustion method is another common method for 
preparing spinel aluminate. Compared with other 
methods, it can quickly and easily synthesize materials 
with different crystal structures. The performance of 
synthetic materials using combustion depends on the 
precursor materials used in the synthesis, the fuel, and 
the heating conditions. [64, 75-78] The precursor 
material produces oxygen when it is burned, which 
makes it easy to produce oxides, so simple oxides and 
complex oxides can be obtained during the combustion 
reaction [75, 76]. A novel combustion method has been 

 

Figure 1: Process flow chart of preparation of nickel aluminate film by sol-gel assisted ultrasonic atomization technology. 
Adapted from ref. [71]. Copyright © 2021 Elsevier Inc. 
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proposed in previous studies, whereby oxidant and fuel 
are burned at low temperatures (<500℃) to produce an 
exothermic reaction through the gas, producing oxides 
within minutes [77, 78]. Stella et al. [79] synthesized 
NiAl2O4 using urea and glycine as fuel. The 
experimental results showed that when urea was used 
as fuel, there would be large particles in the 
synthesized powder, while when glycine was used as 
fuel, the synthesized powder would be fluffy and foamy. 
This reason may be that the crystal structure of NiAl2O4 
is affected by the release of gas during the combustion 
reaction, which is determined by the oxidant and fuel. 
Elvia Leal et al. [64] used the combustion reaction 
method to use glycine as fuel to study the effect of 
excessive fuel on the structure of the synthesized 
NiAl2O4 powder. The experimental results showed that 
the main phase of NiAl2O4 would be produced even 
with excessive dose, but the larger the dose, the 
smaller the grain size and the larger the aggregate 
size.This further shows that fuel can affect the 
properties and structure of synthetic materials.  

In recent years, researchers have developed novel 
combustion methods based on conventional 
combustion methods through trial and experiment. 
Ragupathi et al. [80, 81] synthesized NiAl2O4 from 
extracts of aloe and sesame as fuel by conventional 
combustion method (CCM) and microwave combustion 
method (MCM), and analyzed its shape, particle size, 
crystal structure, optics and catalytic properties. The 
experimental results show that the combustion reaction 
of MCM is much shorter than that of CCM, the heating 
time is relatively shorter, and the prepared NiAl2O4 
maintains a higher purity. Manikandan et al. [82] 
proved again the characteristics of fast combustion 
reaction speed and high purity of prepared materials 
through experiments.Microwave combustion (MCM) 
provides a novel method for the synthesis of spinel 
aluminate.  

In recent years, the emergence of sol-gel 
spontaneous combustion provides a new way to 
synthesize metal oxides. The combination of sol-gel 
method and combustion method has the characteristics 
of simple, low cost, rapid heating and short reaction 
time [83-85]. Thanit Tangcharoen et al. [86] 
synthesized NiAl2O4 by sol-gel spontaneous 
combustion method and the morphology, particle size 
and crystal structure were studied by X-ray diffraction 
(XRD), X-ray absorption near-side structure (XANES), 
and extended X-ray absorption fine structure (EXAFX). 
Tangcharoen et al. [87] proved that diethanolamine 

(DEA) was used as a new fuel to successfully 
synthesize spinel aluminate by sol-gel spontaneous 
combustion method, and analyzed its morphology, 
particle size and crystal structure. The results showed 
that the aluminate prepared by this method all obtained 
single-phase spinel structure and different band gap 
values. Although there are many methods to prepare 
nickel aluminate, the polyacrylamide gel method has 
not been used to synthesize nickel aluminate and study 
its physical and chemical properties. 

2.2. Synthesis of Ion-Doped Nickel Aluminate 
Catalysts 

It has been reported that a single ion with bivalent 
or trivalent properties already possesses conductivity, 
optics, magnetism and other properties [88]. Metal ions 
doped aluminate is a simple and effective work to 
improve the photocatalytic activity of photocatalysts. It 
can trap electrons and become an effective scavenger, 
and can prevent electron-hole pair recombination. In 
recent years, researchers have proposed the method 
of ion doping nickel aluminate to improve the 
performance of monomer nickel aluminate on the basis 
of the good performance of ions. Irshad et al. [89] 
doped silver ions with good electrical conductivity with 
nickel aluminate by sol-gel method to improve the 
electrical properties of monomer nickel aluminate. The 
experimental results show that the electrical 
conductivity is obviously improved after silver ion 
doping. At the same time, Irshad et al. doped silver 
ions with NiAl2O4 by sol-gel method and combined 
graphite carbon nitride with NiAl2O4 by ultrasonic-
assisted method to synthesize Ag-NiAl2O4@g-C3N4 
composite materials, as shown in Figure 2 [59]. 

In the field of photocatalysis, doping will change the 
band gap value of semiconductor, and the band gap 
value may affect the speed of electron-hole pair 
generation, thus affecting the photocatalytic 
degradation efficiency of dyes [59]. Elakkiya et al. [90] 
doped NiAl2O4 with divalent ions (copper, zinc, 
magnesium) by sol-gel method to degrade methylene 
blue (MB) and methyl orange (MO), and studied their 
optical properties. The experimental results show that 
the degradation efficiency of MB and MO is Mg>Zn> 
original sample >Cu, and the performance of Mg 
doping is better. The reason is that the band gap of 
Mg0.1Ni0.9Al2O4 is lower than that of Cu0.1Ni0.9Al2O4, 
Zn0.1Ni0.9Al2O4 and NiAl2O4. This may be because 
when the band gap value is low, it inhibits the 
production of electron-hole pairs and therefore dyes 
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mineralization faster. Experimental results show that 
the degradation efficiency of Ag-NiAl2O4 is much higher 
than that of single component NiAl2O4, and the band 
gap measured by single component NiAl2O4 is 3.5eV, 
and the band gap measured by doping is 2.66 eV. 
Confirming the previous idea, lower band gap values 
can more easily inhibit the generation of electron-hole 
pairs, thus improving the photocatalytic efficiency. 

Akika et al. [91] prepared Ni1-xCuxAl2O4 (x=0.2, 0.4, 
0.6, 0.8, 1) nanomaterials by Cu doping NiAl2O4 by the 
coprecipitate method and used it for photocatalytic 
degradation of Congo red (CR). The band gap values 
of Ni1-xCuxAl2O4 with different doping ratios were 
measured in the experiment. The results showed that 
the degradation rate of Ni1-xCuxAl2O4 was much higher 
than that of the original sample NiAl2O4. Regulska et al 
[92] doped Er, Tm, Yb with NiAl2O4 and used it for 
photocatalytic degradation of oxytetracycin (OTC). The 
band gap values of NiAl2O4, Yb-NiAl2O4, Tm-NiAl2O4 
and Er-NiAl2O4 measured in the experiment are 3.45, 
3.41, 3.27 and 3.12 eV, respectively. The 
photocatalytic degradation efficiency is Er-NiAl2O4>Tm-
NiAl2O4>Yb-NiAl2O4>NiAl2O4. Therefore, the above 
conclusion is further confirmed. Effectively changing 
the band gap value can improve the efficiency of 
photocatalysis. 

2.3. Synthesis of Nickel Aluminate Based 
Composite Catalysts 

In recent years, researchers have compounded 
NiAl2O4 based on a single component to improve the 
performance of the monomer. Dhara et al. [93] 
synthesized thermally stable NiAl2O4/Al2O3 nano-
composite powder samples by isomolar 
mechanochemical reaction, and the synthesis process 
was shown in Figure 3. They also studied the 
microstructure characterization, optical properties, 
electrical transport and dielectric properties of 
NiAl2O4/Al2O3. Arunkumar et al. [94] synthesized 
aluminate - activated carbon (MAAC) matrix 
composites by coprecipitate method.The results show 
that the photocatalytic efficiency of activated carbon 
matrix composites is much higher than that of nickel 
aluminate matrix composites. Kunde et al. [95] 
synthesized nickel aluminate/multi-walled carbon 
nanotubes NiAl2O4/MWCNT by an environmentally 
friendly modified evaporation-induced self-assembly 
process (m-EISA). Muralidharan et al. [96] successfully 
synthesized NiAl2O4 and SiO2 composites 
(NiAl2O4:SiO2) by using in situ sol-gel method. Due to 
the excellent properties of g-C3N4, Ahmad et al. [97] 
synthesized NiAl2O4 and g-C3N4 binary composite by 
calcination and ultrasonic-assisted method to improve 
the performance of photodegradation of 2, 4-

 

Figure 2: Flow chart of Ag-NiAl2O4 synthesis by sol-gel method and Ag-NiAl2O4@g-C3N4 synthesis by ultrasonic assisted 
method. Adapted from ref. [59]. Copyright © 2022 Elsevier B.V.  
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dinitrophenol. Regulska et al. [98] prepared a 
composite material of NiAl2O4 and graphene quantum 
dots (GQDS) using coprecipitation method.It is used in 
photocatalytic degradation of rhodamine B, quinoline 
yellow, eriochrome black T, and methylene blue. 

3. APPLICATION OF NIAL2O4 BASED CATALYSTS 
IN THE FIELD OF CATALYSIS 

NiAl2O4 belongs to partial antispinel and is a mixed 
cationic oxide with normal spinel structure. Half of the 
Al3+ ions are distributed in the tetrahedral void and the 
other half is distributed in the octahedral void. Ni 
occupies the tetrahedral position and has a stable 
structure and high catalytic activity at high temperature. 
Although spinel NiAl2O4 has a large specific surface 
area and small particle size, it can easily separate 
electrons and holes and inhibit the recombination of 
electron hole pairs under ultraviolet light, so it can be 
used as a photocatalyst. Due to the continuous 
emergence of ion-doped NiAl2O4 photocatalysts and 
heterojunction NiAl2O4 based photocatalysts, the 
catalytic activity of single component NiAl2O4 has been 
greatly improved. These catalysts have been widely 
used in the degradation of drugs, azo dyes, refractory 
pollutants, catalytic oxidation of benzyl alcohol and 
methanol, photocatalytic water hydrogen production, 
etc. 

The application of NiAl2O4 in catalysis began in 
1994, when Pena et al. [99] used NiO/NiAl2O4 to study 
the effect of catalyst pretreatment on the relative rates 
of the main reaction and coking reaction during 
acetylene hydrogenation. Subsequently, the research 
upsurge of NiAl2O4 in catalytic field was set off [100-
103]. However, the research of NiAl2O4 in the field of 
photocatalysis is relatively late. It was only reported in 
2014 that NiAl2O4 was used to photocatalyze hydrogen 
production from water [104, 105]. Since then, NiAl2O4 
has gradually been used to dedegrade dyes [72]. 
Simultaneously, NiAl2O4 is also used to adsorb heavy 
metal ions due to its excellent adsorption performance 
[106]. In recent years, researchers are trying to use 
new methods to enhance the photocatalytic activity of 
NiAl2O4 to degrade refractory pollutants and drugs. 

3.1. Application of NiAl2O4 Based Catalysts in the 
Field of Photocatalytic Degradation of Dyes 

The application of NiAl2O4 in dye degradation 
mainly focuses on the study of photocatalysis. Due to 
its special electronic structure and energy level 
structure, NiAl2O4 can only respond to UV light, so 
most of the research work focuses on the catalytic 
activity of UV light. Because the sunlight contains a 
certain amount of ultraviolet light, so some researchers 
have used NiAl2O4 in the field of solar photocatalysis. 

 

Figure 3: Schematic diagram of the synthesis of NiAl2O4/Al2O3 nanocomposites. Adapted from ref. [93]. Copyright © 1999-2023 
John Wiley & Sons, Inc.  
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As the research progresses, researchers are working 
on how to use the visible light in sunlight, which makes 
up the majority of sunlight, to develop NiAl2O4 based 
photocatalysts driven by visible light. The following 
strategies have been adopted to enhance the 
photocatalytic activity of NiAl2O4. In order to solve the 
problem of large band gap value of NiAl2O4, the band 
gap value of NiAl2O4 can be degraded by ion doping, 
so as to improve its optical response range, so that 
NiAl2O4 can respond to visible light. Noble metal 
particles are good carriers for electron transport. The 
modification of noble metal particles on the surface of 
NiAl2O4 will help to enhance its photocatalytic activity. 
The photocatalytic activity of NiAl2O4 can be greatly 
improved by combining some excellent visible light 
responsive semiconductor materials with NiAl2O4, in 
addition to introducing interfacial defects to enhance 
the transfer and separation of electron and hole pairs.  

Table 1 shows the comparison of the application of 
NiAl2O4 based photocatalyst for the degradation of 
dyes [34, 59, 72, 87, 90, 91, 94, 107-112]. It can be 
seen from Table 1 that NiAl2O4 has high photocatalytic 
activity in the degradation of organic dyes under 
ultraviolet light. According to the calculation of specific 
activity, NiAl2O4 synthesized by different methods has 
different photocatalytic activity, and when NiAl2O4 

degrades different dyes, its photocatalytic activity is 
also different. This was sufficient to confirm that 
NiAl2O4 was selective in degrading dyes. When NiAl2O4 
is doped with different ions such as Mg, Zn and Cu, the 
photocatalytic activity of ZnAl2O4 is greatly affected by 
different metal ions. With the increase of ionic radius, 
the photocatalytic activity of ZnAl2O4 decreases. The 
use of ion-doped NiAl2O4 photocatalysts for 
degradation of different dyes did not show strong 
selectivity. The photocatalytic activity of NiAl2O4 can be 
enhanced by ion doping, surface modification of noble 
metal ions and heterojunction construction. 

It is interesting that Irshad et al. [59] synthesized 
Ag-NiAl2O4/g-C3N4 composite photocatalysts by sol-gel 
method with high photocatalytic activity in the 
degradation of organic dyes. By modifying Ag particles 
on the surface of NiAl2O4 and coupling with g-C3N4 to 
form heterojunction, the NiAl2O4 based photocatalyst 
has high charge transfer and separation efficiency, 
which enhances the photocatalytic activity of NiAl2O4. 
Figure 4 shows the photocatalytic mechanism of Ag-
NiAl2O4@g-C3N4 photocatalysts. Hydroxyl radicals and 
superoxide radicals dominate the entire photocatalytic 
reaction, eventually interacting with dyes to produce 
CO2 and H2O.  

 

Figure 4: Photocatalytic mechanism of Ag-NiAl2O4@g-C3N4 photocatalysts. Adapted from ref. [59]. Copyright © 2022 Elsevier 
B.V. 
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3.2. Application of NiAl2O4 Based Catalysts in the 
Field of Photocatalytic Degradation of Drugs 

In recent years, with the further development of the 
study of photocatalysis in the field of dyes, the 

Table 1: Comparison of the Application of NiAl2O4 Based Photocatalyst for the Degradation of Dyes. MB- Methylene 
Blue, MO- Methylene Orange, CV-Crystal Violet, RhB- Rhodamine B, BA- Weak Acid Brilliant blue, CR- Congo 
Red, MG- Malachite Green, MR-methyl red, D-Degradation Percentage, SA-Specific Activity 

Samples Dye Lamp CCatalyst (g·L–1) CDye (mmol L–1) t (h) D (%) SA (mmol/g/h) Ref. 

Zn0.1Ni0.9Al2O4 MB UV light 1.5 0.0312 2 93% 0.0097 

Mg0.1Ni0.9Al2O4 MB UV light 1.5 0.0312 2 97% 0.0101 

NiAl2O4 MB UV light 1.5 0.0312 2 91% 0.0095 

Cu0.1Ni0.9Al2O4 MB UV light 1.5 0.0312 3 90% 0.0063 

90 

NiAl2O4 MB Visible lights 0.2 0.0312 1 47% 0.0733 34 

NiAl2O4 MB Visible lights 0.3 1×10-5M 2 94% / [107] 

NiAl2O4 MB UV light 0.2 0.0312 1.4 94.2% 0.1049 [87] 

NiAl2O4 MB Sun light 0.2 0.0156 2.7 58.16% 0.0168 

Ag-NiAl2O4 MB Sun light 0.2 0.0156 2.7 71.13% 0.0205 

Ag-NiAl2O4@g-C3N4 MB Sun light 0.2 0.0156 2.67 85.26% 0.0249 

[59] 

NiAl2O4 MB UV light 0.5 0.0312 1 54% 0.0336 

NiAl1.98Bi0.02O4 MB UV light 0.5 0.0312 1 89% 0.0554 

NiAl1.98Ce0.02O4 MB UV light 0.5 0.0312 1 94% 0.0586 

[108] 

NiAl2O4 MB UV light 0.4 0.00625 1.67 99%  [109] 

Zn0.1Ni0.9Al2O4 MO UV light 1.5 0.0305 3 92% 0.0062 

Mg0.1Ni0.9Al2O4 MO UV light 1.5 0.0305 1.5 96% 0.0130 

NiAl2O4 MO UV light 1.5 0.0305 3 94% 0.0064 

Cu0.1Ni0.9Al2O4 MO UV light 1.5 0.0305 3 84% 0.0057 

[59] 

NiAl2O4 MO Tungstate lamps   4.5 90%  [72] 

NiAl2O4 MO Mercur lamp  0.1527 1.33 82%  [110] 

NiAl2O4 MO UV light 0.2 0.0305 1.4 88.4% 0.0962 [87] 

NiAl2O4 MO UV light 0.5 0.0312 1 31% 0.0193 

NiAl1.98Bi0.02O4 MO UV light 0.5 0.0312 1 91% 0.0568 

NiAl1.98Ce0.02O4 MO UV light 0.5 0.0312 1 94% 0.0587 

[108] 

NiAl2O4 CV Sun light 0.2 0.0484 2.7 57.14% 0.0512 

Ag-NiAl2O4 CV Sun light 0.2 0.0484 2.7 70.52% 0.0632 

Ag-NiAl2O4@g-C3N4 CV Sun light 0.2 0.0484 2.67 83.87% 0.0760 

[59] 

NiAl2O4 RhB UV light 0.2 0.0208 1.4 91.7% 0.0681 [87] 

NiAl2O4 RhB UV light 0.5 0.0312 1 73% 0.0456 

NiAl1.98Bi0.02O4 RhB UV light 0.5 0.0312 1 87% 0.0543 

NiAl1.98Ce0.02O4 RhB UV light 0.5 0.0312 1 90% 0.0562 

[108] 

Ag-NiAl2O4@g-C3N4 BA Sun light 0.2 0.0409 2.67 68.46% 0.0524 [59] 

NiO/NiAl2O4 CR UV light 0.33 0.9616 2/3 88.91%/100% 1.2953/0.9713 [111] 

Ni0.2Cu0.8Al2O4 CR Xenon lamp 1 0.5769 3 90.55% 0.1741 [91] 

Co0.85Ni0.15Al2O4−δ /AC MG Tungsten 
halogen lamp 0.05 1x10-4M 1.5 100% / [94] 

NiAl2O4 MG Visible lights 0.3 1X10-5M 2 89% / [107] 

NiAl2O4 MG Visible lights 1 0.0027 2 42% 0.0006 

Ni1-xCoxAl2O4-δ MG Visible lights 1 0.0027 2 20%~39% 0.0003~0.0005 
[112] 

NiAl2O4 MR UV light 0.2 0.0371 1.4 88.9% 0.1178 [87] 
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photocatalysis mechanism and the reaction process of 
dye degradation are familiar, which makes the study of 
dyes fall into a trough. Even from the structure of the 
dye, its structure is so simple that different catalysts are 
used to degrade the same reaction process, which 
allowed researchers to quickly understand its reaction 
mechanism. In order to promote the rapid development 
of research in the field of photocatalysis, researchers 
have focused on the degradation of drugs. The 
molecular structure of drugs such as antibiotics is 
complex, and the study of its degradation process 
needs to be combined with many professional 
characterization equipment and rich research 
experience of researchers. Therefore, synthesis of new 
photocatalysts to degrade drugs has become a new 
research direction in the field of photocatalysis. 

The same is true for NiAl2O4 photocatalyst research, 
researchers have gradually shifted the focus of 
research to photocatalytic degradation of drugs. Table 
2 shows the comparison of the application of NiAl2O4 
based photocatalyst for the degradation of drugs [34, 
92, 113, 114]. Similar to the study on dyes, the 
researchers also used ion doping and heterostructure 
to improve the photocatalytic activity of NiAl2O4 
photocatalysts for the photocatalytic degradation of 
drugs. Since it was in its infancy, NiAl2O4 based 
photocatalysts were only used to degrade tetracycline 
hydrochloride, 2,4-dichlorophenol and oxytetracycline 
hydrochloride. By doping NiAl2O4 with rare earth metal 
ions, it was found that the photocatalytic activity of 
NiAl2O4 increased with the increase of ionic radius, 
which was contrary to the trend of dye degradation. 
The main reason is that with the increase of the radius 
of rare earth ion, the outermost electron of rare earth 
ion is easy to be activated by light energy to produce 
free electrons, which promotes the separation and 
transfer of charge carriers, and thus enhances the 
photocatalytic activity of NiAl2O4 based photocatalyst. 

Figure 5 shows the proposed mechanism of the 
rare- earth-metals-doped nickel aluminates [92]. The 
more electrons in the outermost layer of rare earth ions 
are, the easier they are to be excited by sunlight, which 
contributes to the transfer and separation in the 
photocatalytic process, thus promoting the generation 
of hydroxyl radicals and superoxide radicals. 
Meanwhile, because NiAl2O4 is partially antispinel 
structure, rare earth ion doping will further affect its 
internal crystal structure, electronic structure and 
energy level structure, resulting in lattice distortion, 
produce oxygen vacancy or defect, and enhance the 
transfer and separation of electron and hole pairs in 
NiAl2O4 based photocatalysts. However, the research 
of NiAl2O4-based photocatalysts for drug degradation is 
not mature, especially the photocatalytic mechanism, 
drug degradation path and reaction process need 
further exploration in order to understand their internal 
mechanism. 

 

Figure 5: The proposed mechanism of the rare- earth-
metals-doped nickel aluminates. Adapted from ref. [92]. 
Copyright © 2022 Elsevier B.V. 

Table 2: Comparison of the Application of NiAl2O4 Based Photocatalyst for the Degradation of Drugs. TC-Tetracycline 
Hydrochloride, OTC-Oxytetracycline Hydrochloride 

Samples Drug Lamp CCatalyst (g·L–1) CDrug (mmol L–1) t (h) D (%) SA (mmol/g/h) Ref. 

NiAl2O4/g-C3N4 TC Sun light 0.3 0.0264 2 90% 0.0396 [113] 

NiAl2O4 TC UV light 0.5 0.0132 0.5 83% 0.0439 [34] 

NiO–NiAl2O4 2,4-dichlorophenol UV light 2 0.2454 2 94% 0.0577 [114] 

NiAl2O4 OTC Sun light 1.5 0.00003 2 27% 0.0000027 

Yb-NiAl2O4 OTC Sun light 1.5 0.00003 2 49% 0.0000049 

Tm-NiAl2O4 OTC Sun light 1.5 0.00003 2 62% 0.0000062 

Er-NiAl2O4  OTC Sun light 1.5 0.00003 2 73% 0.0000073 

[92] 
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3.3. Application of NiAl2O4 Based Catalysts in the 
Field of Catalytic Oxidation of Benzyl Alcoho and 
Methanol 

Experimental research on the catalytic oxidation of 
NiAl2O4 has been going on for a long time, more than a 
decade before its use in photocatalytic degradation of 
dyes and drugs. In the early years, arousing the 
attention of many scientific researchers, NiAl2O4 was 
used in oxidative degradation benzyl alcoho and 
methanol. Table 3 shows the comparison of the 
application of NiAl2O4 based photocatalyst for the 
catalytic oxidation of benzyl alcoho [30, 115]. By doping 
Co ions into the lattice of NiAl2O4 and catalyzing the 
oxidation of benzyl alcoho, researchers found that it 
has a high catalytic oxidation performance. Similarly, 
the crystal structure and microstructure of NiAl2O4 have 
great influence on its catalytic oxidation performance. 

The catalytic oxidation performance of NiAl2O4 can be 
improved effectively by fabricating special defective 
structures with the antispinel structure. 

Similar to the study of photocatalysis, the catalytic 
oxidation performance of single component NiAl2O4 is 
relatively low, so special methods should be used to 
enhance its catalytic oxidation performance. Therefore, 
MgO/NiAl2O4 composite oxides with different mass 
percentages were synthesized to investigate their 
catalytic oxidation properties. Table 4 shows the 
comparison of the application of NiAl2O4 based 
photocatalyst for the catalytic oxidation of methanol 
[116-118]. The results confirm that NiAl2O4-based 
catalyst methanol has high catalytic oxidation capacity.  

Figure 6 shows the redox mechanism of methanol 
over Pt/NiAl2O4 and Pt/γ-Al2O3. Li et al. [119] prepared 

Table 3: Comparison of the Application of NiAl2O4 Based Photocatalyst for the Catalytic Oxidation of Benzyl Alcoho 

Samples Organic 
matter 

Ccatalyst 
(g·L–1) Oxidant Temperature/Time Conversion (%) Selectivity (%) Ref. 

NiAl2O4 
Benzyl 
alcoho 0.5 

Benzyl alcohol (5 mmol) 
H2O2 (5 mmol) 

80 ◦C/8 h 60 100 [80] 

Ni0.6Co0.4Al2O4 
Benzyl 
alcohol 0.5 

Benzy lalcohol (5 mmol) 
acetonitrile (5 mmol) 

H2O2 (5 mmol) 
80 ◦C/5 h 

94 
 

100 [115] 

 
Table 4: Comparison of the Application of NiAl2O4 Based Photocatalyst for the Catalytic Oxidation of Methanol 

Samples Organic 
matter 

Ccatalyst 
(g·L–1) Oxidant Temperature/

Time XCH4,% YH2 YCO YCO2 H2/CO CO/CO2 Ref. 

5wt.% 
MgO/ 

NiAl2O4 

38,400 cm3 
CH4 g−1 h−1 0.125 

10%CH4/5%
O2/85%N2 
(O/C = 1) 

700 ◦C/ 
20 h 

83 0.92 0.75 0.08 2.8 9.6 

5wt.% 
MgO/ 

NiAl2O4 

38,400 cm3 
CH4 g−1 h−1 0.125 

10%CH4/5%
O2/85%N2 
(O/C = 1) 

700◦C/ 
20h/25 h 

63 0.46 0.56 0.07 1.7 7.8 

[116] 

NiAl2O4 
(0.5) 

38400 mL 
CH4 g−1 h−1 0.125 O/C = 1 650 ◦C/3 h 73 0.67 0.55 0.18 2.4 3 

NiAl2O4 
(0.5) 

38400 mL 
CH4 g−1 h−1 0.125 O/C = 1 700 ◦C/3 h 82 0.77 0.69 0.13 2.2 5.3 

[117] 

NiAl2O4 
4800 mL 

CH4 g−1 h−1 0.5 10%CH4/5%
O2/N2 

550 ◦C / 1.82 0.52 0,57 3.5  

NiAl2O4 
4800 mL 

CH4 g−1 h−1 0.5 10%CH4/5%
O2/N2 

650 ◦C / 1.77 0.78 0.15 2.29 / 

NiAl2O4 
4800 mL 

CH4 g−1 h−1 0.5 10%CH4/5%
O2/N2 

750 ◦C / 1.74 0.82 0.04 2.11 / 

NiAl2O4 
4800 mL 

CH4 g−1 h−1 0.5 10%CH4/5%
O2/N2 

850 ◦C / 1.72 0.83 0.02 2.08 / 

[118] 
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the Pt/NiAl2O4 and Pt/γ-Al2O3 catalysts by co-
precipitation method combined with incipient wetness 
impregnation method. The phase structure, 
microstructure and catalytic oxidation performance of 
different catalysts were studied by different 
characterization methods. For the Pt/NiAl2O4 catalyst, 
Pt than Pt/γ-Al2O3 catalyst has high reducing capacity, 
methanol can methanol catalytic oxidation, improve 
NiAl2O4 catalytic oxidation performance. The catalytic 
oxidation performance of NiAl2O4 based catalyst has 
been concerned by researchers since its discovery, 
and is still in continuous research. 

3.4. Other Applications of NiAl2O4 Based Catalysts 

NiAl2O4 based catalysts has been widely used in the 
degradation of dyes, drugs and catalytic oxidation of 
methanol, and also has potential applications in the 
photocatalytic reduction of Cr(VI) ions, photocatalytic 
water hydrogen production and other fields. 
Bouallouche et al. [120] constructed a NiAl2O4/ZnO 
heterojunction that allows photocatalytic reduction of 
Cr(VI) ions under visible light. Of course, in terms of 
dye adsorption, ternary CeO2/NiO/NiAl2O4 
nanocomposite was constructed to adsorb Direct Red 
23 dye, and the results showed that this adsorbent has 
high adsorption capacity. [121] Sebai et al. [122] using 
nitrate route, the preparation of the spinel NiAl2O4 and 
studied its photocatalytic hydrogen production capacity, 
the result indicates that it under visible light irradiation 
conditions with high hydrogen production ability. Due to 
the special crystal structure, microstructure and energy 
level structure of NiAl2O4, its application in the field of 
catalysis has been paid more and more attention, and 
some new research fields are also being further 

studied. Therefore, its research in the new catalytic 
field will be pursued by more and more researchers 
and push it towards the climax of the study. 
Electrocatalysis is a way of clean energy conversion. It 
is very important to select a reasonable and stable 
catalyst [123, 124]. Ni has higher alloying efficiency 
than other metals. Therefore, when conducting 
electrocatalytic experiments, choosing Ni composite 
materials can better provide the required properties 
[125]. Aman et al. [126] prepared a composite material 
of NiAl2O4 and graphene oxide (GO) as an efficient 
OER electrocatalyst. On the basis of good electrical 
conductivity and electron transport ability of carbon-
based materials, Aman et al. [127] chose NiAl2O4 to be 
combined with it to improve the electrochemical and 
catalytic performance of OER. Regulska et al. [128] 
have combined NiAl2O4 with graphene quantum dots 
(GQDs) and conducted electrochemical studies. The 
results show that for monomer NiAl2O4, the composite 
has strong ultracapacitor and electrocatalytic 
performance. 

4. CONCLUSIONS AND PROSPECT 

The synthesis of NiAl2O4 based catalysts and their 
applications in the degradation of dyes, 
pharmaceuticals, catalytic oxidation of methanol and 
other applications are reviewed. The catalytic activity of 
NiAl2O4 based catalyst is strongly dependent on the 
preparation method, crystal structure, energy level 
structure and microstructure. The research on the 
catalytic activity of NiAl2O4 based catalysts is 
expanding from catalytic oxidation, photocatalytic 
degradation of dyes, drugs, adsorption and 
photocatalytic hydrogen production. NiAl2O4 based 
catalyst is selective to degradation of dyes, and its 

 

Figure 6: The redox mechanism of methanol over Pt/NiAl2O4 and Pt/γ-Al2O3. Adapted from ref. [119]. Copyright © 2019 
American Chemical Society. 
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photocatalytic activity varies with the different types of 
ion doping. Based on the results of the study on the 
catalytic activity of single-component NiAl2O4, ion-
doped NiAl2O4 and heterogeneous structures of multi-
component NiAl2O4 heterojunction catalysts, the related 
catalytic mechanisms are also reviewed in detail. 

As a promising catalyst, its research in some 
aspects is still in the exploratory stage, which can be 
explored in future studies as follows: 

1. The construction of a new NiAl2O4 based 
photocatalyst heterojunction and its 
photocatalytic mechanism were investigated by 
combining the first principles calculation and 
experimental study.  

2. Based on different intelligent algorithms, an 
intelligent algorithm optimized neural network 
model was established to predict the catalytic 
activity of the synthesized catalyst, and then the 
optimized prediction model was obtained to 
predict its catalytic performance. 

3. High entropy alloy is a promising photocatalyst. 
By coupling it with NiAl2O4 to construct high 
entropy alloy /NiAl2O4 heterojunction 
photocatalyst, using the excellent electron 
transport ability, cocktail effect and visible light 
response ability of high entropy alloy, a novel 
photocatalyst with high efficiency can be 
obtained. 

4. Metal-organic framework materials (MOFs) are a 
kind of coordination polymers. By combining 
MOFs with NiAl2O4 to construct MOFs/NiAl2O4 
heterojunction photocatalysts, MOFs/NiAl2O4 
photocatalysts are expected to be a new reliable 
photocatalyst due to the design of their own 
structures and the tunability of photon 
absorption. 
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