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Abstract: Conventional physically based models have long yielded promising results, as they have been the main tool 
to depict the underpinnings of the physics governing the hydrological events. These models, however, suffer from certain 
issues such as the intense calibration time or the uncertainty in the estimation of hydrological variables. The 
development of the sophisticated data-driven techniques, and machine learning models in particular, combined with rapid 
increases in computational abilities (graphics processing units, computer clusters. etc.), has enabled hydrologists to 
utilize the data driven models in tandem with the well-established hydrological models to simulate miscellaneous 
environmental processes nimbly, and therefore circumvent the aforementioned conundrums associated with the 
physically based models. To this end, the present study aims at exploring a sophisticated neural network called 
variational Bayesian neural network, to improve the accuracy of physically based predictions such as runoff. Our neural 
network was able to accurately forecast the runoff rates with the mean Pearson correlation coefficient of 86.27% ± 0.0599  
within a randomly selected subset of cells in the Brazos River Basin. As these cells are selected randomly across the 
basin, we exclude the possibility of biasing our neural network by any specific cell. Moreover, this work for the very first 
time, to the best of our knowledge, suggests a similarity-based solution to transfer the learning model developed in a 
basin to be deployed across a different basin. In other words, there would be no need to develop a learning model for 
each basin from scratch. We, instead, utilize the models learnt from the previously studied basins. We cross-validated 
our proposed transfer learning solution via leave-one-out strategy within the grid cells of the Brazos River basin 
achieving a mean Pearson correlation coefficient of 85.83% ± 0.0592 . 

Keywords: Variational Bayesian neural network, VIC Model, Similarity, Transfer-Learning, Pearson correlation 
coefficient. 

1. INTRODUCTION 

Accurate simulation of runoff rates is of crucial 
importance for reservoir operators, since it could serve 
as the fundamental indicator for the early flood 
warnings as well as the key point to devise a suitable 
water resource management scheme for dry seasons 
[1]. Decision-making relative to water resource 
management, however, necessitates the emulation of 
miscellaneous hydrological interventions to examine the 
diverse human-land-water dynamics. Conventional 
physically based models have long been successfully 
used for such purposes. These models, nonetheless, 
suffer from certain limitations associated with 
calibration processes including the physical distortion 
caused by an incorrect parameter tuning, and 
particularly, the tedious computational time [2-4]. These 
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issues call for a robust and nimble solution to unravel 
the underlying intricate inter-relationships of 
hydrological parameters solely through probing the 
data. Apart from the physically based models, a variety 
of statistical methods has been explored to simulate 
the dynamics of hydrological events (Geetha et al., 
2016 [5]; Graham et al., 2017 [6]; Stern et al., 1984 [7]; 
Chandler et al., 2002 [8]). These methods, however, 
often fail to meet the practical needs, as a prior input- 
output relationship assumption such as the order of 
non-linearity between the variables is required. 
However, environmental systems are characterized by 
non-linearity and heterogeneity, and therefore, a prior 
inter-relationship assumption might not be feasible. 
Specifically, one of the statistical methods that have 
also been implemented to improve the simulations of 
water dynamics is Hydrologic Data Assimilation. This 
approach however is also characterized by certain 
limitations. Combining the strengths of model estimates 
and remote sensing or in-situ observations, and often 
mitigating against their weaknesses, is achieved 
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through Data assimilation (DA). Through DA, the 
aforementioned sources of information are merged in 
the aim of increasing the spatiotemporal resolution, as 
well as the accuracy of the investigated variable. 
Hydrologic DA is a common practice, which results in 
the reduction of the ambiguity in model predictions, as 
well as the improvement over observations. A plethora 
of studies [9-15] show that hydrologic DA leads to 
statistically significant improvements in the accuracy of 
the models. Nevertheless, these results vary greatly 
among different assimilation techniques, hydrologic 
models, and geographical regions. As such, more 
studies are needed to provide further insight into novel 
approaches that can improve parameter calibration in 
hydrological modeling. 

Data-driven models, and machine learning models 
in particular, have recently obtained immense 
applicability in hydrologic modeling as they tackle the 
conventional shortcomings in physically based models 
[16-18]. Several studies have investigated the potential 
of the application of artificial intelligence to emulate the 
physical-based hydrological events. To name a few, 
Kratzert et al., 2018 [19] proposed a novel data-driven 
approach, using the Long Short-Term Memory (LSTM) 
network for rainfall-runoff modeling using 241 
catchments of the freely available CAMELS dataset. 
Hu et al., 2018 [1] deployed ANN and LSTM network 
models for simulating the rainfall-runoff process based 
on flood events from 1971 to 2013 in Fen River basin in 
china. Alizadeh et al., 2018 [20] compared the 
performance of a couple of learning models i.e. 
feedforward neural networks (FFNNs), time delay 
neural networks (TDNNs), radial basis neural networks 
(RBFNNs), recurrent neural network (RNN), a 
grasshopper optimization algorithm (GOA)-based 
support vector machine (SVM) and K-nearest 
neighbors (KNN) model for monthly flow prediction. 
Kenabatho et al., 2015 [21] applied artificial neural 
networks (ANNs), and Multiplicative Autoregressive 
Integrated Moving Average (MARIMA) to investigate 
the association between rainfall and large-scale rainfall 
predictors in Botswana. Fang et al., 2017 [22] examined 
the deep learning neural network to predict the soil 
moisture for Soil Moisture Active Passive (SMAP) 
satellite mission of NASA. Tokar et al., 1999 [23] 
employed an Artificial Neural Network (ANN) 
methodology to forecast daily runoff as a function of 
daily precipitation, temperature, and snowmelt for the 
Little Patuxent River watershed in Maryland. 

Overall, the overarching goal of this work is to 
employ a neural network within a Bayesian learning 

framework (Section 5.1) to accurately forecast the 
runoff rates in each grid cell of a river basin and 
transfer these learning models to grids of other basins. 
Here, however, due to the lack of data availability, we 
validated our proposed transfer-learning model within 
the grid cells of the same basin (Brazos) using leave-
one-out strategy [24]. This method, however, can be 
deployed to transfer the learning models across the 
cells in two different basins. As indicated by the 
physics-based and the empirical modelings, the 
temporal variability in runoff can be dominantly 
explained by the variability of precipitation rates 
(Behrangi et al., 2018 [25]; Tayfur et al., 2006 [26]; 
Dawson et al., 1998 [27]). Hence, we merely consider 
the rainfall rates as the fundamental driving factor for 
prediction. Additionally, in this work, we are interested 
in the time-stamps in which a considerable amount of 
precipitation has occurred, or equivalently the runoff is 
above a certain threshold ( ! r ). The rest of the paper is 
organized as follows. Section 2 introduces the region of 
study. The VIC setup and the dataset used in this work 
are discussed in Section 3 and 4, respectively. Section 
5 expatiates on the proposed methodology. Section 5.3 
describes the strategy to convey the learning models 
developed with one basin to be deployed across 
different basins. The results are presented in Section 6. 
Section 7 concludes the paper. 

2. STUDY AREA 

Brazos River Basin is the 11-th longest river in the 
United States and the second biggest basin by area 
within Texas with the size of 45,000 mile2 covering the 
total area of 74051 mile2. The Brazos Basin has a 
combined storage of capacity of 2.5 million acre-feet. It 
flows 840 mile from the confluence of Salt and Double 
Mountain forks in Stonewall County to the Gulf of 
Mexico, having the largest average annual flow volume 
among the rivers in Texas. The afore-mentioned 
characteristics make this basin a perfect case study for 
scientific scrutiny. The Digital Elevation Map (DEM) for 
this river basin is shown in Figure 1. 

3. VIC SETUP 

Measuring runoff rates at the basin scale remains 
an intriguing challenge, and often not feasible in big 
basins as is the case in this work. Therefore, we treated 
the simulated runoff rates out of our well-calibrated VIC 
model as the actual runoff rates and compared our 
predictions against the VIC-modeled output. Here, we 
used the VIC.4.2.c version available from 
https://github.com/UW-Hydro/VIC.git website. VIC 
calibration was performed by employing a technique 
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aiming at matching surface and subsurface runoff 
between a previously calibrated VIC version (4.0.3) 
used in Maurer et al. (2002 [28]) and the version used 
in this analysis (4.2.c). Specifically, three VIC soil 
parameters (the variable infiltration curve parameter, 
the maximum velocity of baseflow parameter, and the 
depth of the bottom soil layer) were optimized via the 
implementation of 200 Monte Carlo iterations, matching 
the runoff ratio between the two aforementioned 
versions of VIC. To avoid training neural network with 
zero values, we herein, take into account the days in 
which runoff is at least ! r = 0.1mm/day. For the rest of 
the paper, we will refer to the VIC generated runoff 
rates as “actual” to benchmark against the predicted 
runoff. 

4. DATASET 

The dataset utilized in this work is extracted from the 
publicly available Livneh database [29]. This database 
contains the US Continent (CONUS) near-surface 
gridded meteorological and derived hydrological data 
with daily temporal resolution spanning from 1915-2011, 
at the spatial resolution of 0.0625 degree and with a 
spatial coverage of 21.21875◦-52.90625◦ (latitude), 
235.4688◦E-293.0312◦E (longitude). In this study, we 
focused on the last five years i.e. 2007-2011 and used 
the daily time series of the meteorological parameters. 
We take into account a randomly selected subset of 
cells (a hundred cells) inside the Brazos basin and 

within the box of 28.9198◦ to 34.7323◦ (N) and 95.2727◦ 

to 103.8352◦ (W). 

5. METHODOLOGY 

In this section, we describe our proposed strategy to 
develop a learning model for each of a hundred of 
randomly selected cells within the Brazos River basin. 
We further, introduce our strategy to transfer the 
learning model trained for a subset of cells to 
accommodate for a new cell, utilizing the similarity 
between their hydrological parameters such as rainfall, 
temperature, wind speed, the three layers of soil 
moisture and the evaporation patterns (Section 5.3). 
The reason for choosing a subset of randomly selected 
cells, as opposed to using them all, was to ensure that 
the cells are scattered across the whole basin, 
ensuring accounting for all possible hydroclimatic 
conditions, and thus, for a given cell, its similar cells 
would not necessary be chosen as the nearest cells 
in Euclidean distance.  

5.1. Variational Bayesian Neural Network 

In this section, we discuss and utilize the recently 
introduced variational Bayesian neural network, i.e. 
Bayes by Backprop [30], towards building a neural 
network for runoff forecasting from rainfall rates. In this 
section, we briefly discuss the idea and the method 
proposed in [30]. The interested readers are 

 

Figure 1: The Shuttle Radar Topography Mission (SRTM) Digital Elevation Map (DEM) resampled from its original resolution of 
1 km to a 0.0625-degree grid for the entire state of Texas. The study area (i.e. Brazos River Basin) is shown with a solid black 
line. Black dots represent the 100 randomly selected cells used to validate the proposed method. 
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encouraged to read [30] for a comprehensive 
explanation of the method. The classic Multi-layer 
neural network aims to optimize the weights over the 
neurons across the network towards an optimal 
mapping function from input features to the target. This 
approach, however, performs well with the presence of 
large amount of input data, and reveals uncertainty in 
regions with small amount of data. This issue promotes 
the application of Bayesian learning to neural networks, 
introducing probability distributions (Gaussian 
distribution in this work) over the weights of the 
network. As suggested by [30], instead of having a 
fixed value, the weights in a neural network should be 
extracted from a probability distribution function (PDF). 
In other words, the learning model is now trained using 
a multitude of networks in which the weights are drawn 
from a probability distribution function. This would then 
make the model reliable against the miscellaneous 
perturbations of the weights.  

Mathematically speaking, given a dataset= 
, we construct the probability [31] function 

conditioned upon the network weights as follows: 

  
p(D | w) = p( yi | xi , w)

i
!           (1) 

with the probability density function and the network 
weights represented as p(!)  and w, respectively. The 
optimal weights can now be achieved using the 
maximum likelihood [32] of the network weights: 

  

w* = argmax  p(w | D)
                   w

          (2) 

Using the Bayesian theorem [33], 
p w / D( )! p D / w( ) p w( )  and hence, posterior 

distribution is a function of the distribution of the 
network weights. Therefore, the a posterior estimate 
[34] of p w / D( )  with a regularization term [35] of 
log p w( )  - to avoid the overfitting [36] - is given by: 

  

w* = arg max  log p(w | D) ! arg max  log p(D | w) p(w) + log p(w)
                               w
             (3) 

Equation 3 computes the point estimate of the 
weights within the network. Additionally, p w / D( )  is not 
tractable in a neural network, and hence, the attempt is 
to find the parameter !  of a distribution on the weights 
q w /!( )  (commonly referred to as the variational 
posterior) that minimizes the Kullback-Leibler 
divergence (KL divergence [37]) with the true posterior: 

  

! * = KL[q(w | D) || p(w | D)]

     = argmin  q(w |! )" log
q(w |! )

p(w) p(D | w)
dw

             !
      = argmin  KL[q(w |! ) || p(w)]# Eq( w|! )[log p(D | w)]

             !
      = argmin  F(D |! )   
             !

 

             (4) 

Therefore, the to-be-minimized loss function is: 

  
F(D,! ) = KL[q(w |! ) || p(w)]" Eq( w|! )[log p(D | w)]        (5) 

The loss function is now estimated by the Monto 
Carlo sample from the variational posterior   p(D / w) : 

  
F(D |! ) " logq(wi |! )

i=1

N# $ log p(wi )$ log p(D | wi )      (6) 

where wi  is the i ! th  Monte Carlo (MC) sample from 
the variational posterior. We used 500 MC samples in 
our simulations. The first term in Equation 6 is the 
variational posterior, which we consider a Gaussian 
distribution with the parameters of µ  and ! 2

 and 
hence the log-posterior would be: 

  
logq(w |! ) = log N (wi |µ," )

i
#          (7) 

For the second term in Equation 6, we consider 
weighted mixture of Gaussians for the prior of network 
weights: 

  
p(w) = !N (wi | 0," 1)+ (1#! )

i=1

$

% N (wi | 0," 2 )        (8) 

where k  indicates the number of neurons or weights in 
the neural network and ! " 0,1[ ] . In addition, we 
assume the weights are identically and independent 
distributed, and hence, the joint probability of them is 
equal to the multiplication of their distributions. The log-
prior of  will be: 

  
log p(w) = log !N (wi | 0," 1) +  (1#! )N (wi | 0," 2 )( )

i
$    (9) 

In this work, we use, ! = 0.2, "1 = 1  and ! 2 = 0.01  
for our simulations. Finally, a softmax layer is used to 
represent   p(D / w)  (the third term in Equation 6). It is 
noteworthy to mention that the optimization should be 
solved for  ! = (µ," )  of the variational posterior i.e. 

  q(w / ! )  to minimize the loss function F D,!( ) . We, 
however, should ensure !  is always non-negative as it 
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represents the variance of a Gaussian distribution. To 
this end, the !  is expressed as a function of a 
parameter !  using a softplus function defined as: 

  softplus(! ) = log[1+ e" ] > 0    #"         (10) 

Ultimately, we have used a shallow neural network 
with three hidden layers. For each layer we used ReLu 
activation function defined in Equation 11. Adam 
optimizer [38] with the learning rate of 0.01 is used for 
network backpropagation optimization. 

  Re lu(x) = max(0,x)         (11)  

5.2. Anomaly Detection 

As discussed in Section 3, we validate our proposed 
method via simulated runoff rates using our well-
calibrated VIC setup. However, these runoff rates could 
have small simulation error propagating across the 
neural network, leading to a poor performance of our 
forecasting model. We, herein, employ an anomaly 
detection technique (explained in [39]) based upon the 
underlying distribution of VIC generated runoff rates to 
detect and remove these outliers. We assume the joint 
distribution of runoff and rainfall obey a Gaussian 
distribution. We then define an outlier as a data point, 
which has a low value in this joint distribution, and 
hence could be abnormal. We first construct the mean 
and standard deviation of all features i.e. rainfall and 
runoff rates using Equations 12 and 13, respectively. 
The joint Gaussian distribution is then given by 
Equation 14. This technique can be summarized in 
three steps: 

1. For a feature xi , we fit a Gaussian distribution 
with the mean and standard deviation of µi  and ! i , 
respectively. 

  
µi =

1
m

xi
j

j=1

m

!          (12) 

  
! i

2 = 1
m

(xi
j " µi )

2

j=1

m

#         (13) 

2. The joint probability distribution of features is 
calculated as: 

  

p(x) = p(xi;µi .! i )
i=1

N

" = 1

2#! i
2

i=1

N

" exp($
(xi $ µi )

2

2! i
2 )      (14) 

3. Given a new data point x* , we claim x*  as an 
outlier if *( )p x !"  

In this work, we have two features (N = 2) 
corresponding to rainfall (x1 )  and runoff (x2 ) , 
respectively. We, herein, detect and remove the 
outliers for each cell individually and  represents the 
number of runoff data points in each cell. Obviously,  
would change from a cell to another, as the number of 
data points varies across the cells after applying the 
runoff threshold ! r( ) . Figure 2 shows the rainfall-runoff 
scatter plot for two cells in which the detected outliers 
are marked in red. It is worth mentioning that the 
optimal value for the ! could be achieved by cross-
validation using a ground-truth data. In this work, the 
optimal ! for each cell is selected from the set 
S! = 0.1, 0.01, 0.001{ }  leading to the maximum 

 

Figure 2: Rainfall-runoff scatter plot for two cells located at (29.90625o N, 96.15625o W) and (30.28125o N, 96.90625o W), 
respectively. The detected outliners using the algorithm in Section 5.2 are depicted with red markers. The optimal value for both 
of these cells are !*= 0.001 . 
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correlation coefficient between the actual and predicted 
runoff: 

  

! *(lat,lon) = argmax  "(r, r̂,lat,lon,! )
                           ! #S!

      (15) 

Figure 3 represents the histogram of the frequency 
of optimal !" s across the whole cells. As shown here, 
most of the cells have the maximum prediction 
correlation coefficient with !*= 0.001 . 

 

Figure 3: The histogram plot of the frequency of optimal ! . 
As shown here the optimal !  for most of the cells is 0.001. 

5.3. Transfer Learning 

Hydrologists have observed the broad scope of 
variant machine and deep learning models to emulate 
miscellaneous hydrologic-hydrodynamic conditions. 
Although the benefits of these models have been 
extensively examined, the reliability implications 
regarding the deployment of one model across various 
hydrologic conditions, for example across different 
basins, have not been scrutinized. These models 
perform well under the base assumption that the 
training and testing data are governed by an identical 
feature space and distribution (Dai et al., 2009 [40]). 
Therefore, they frightfully fail to generalize to the 
testing examples, which are different from the ones 
encountered during training, as they have inherited the 
bias of the training data. Now, a model, or equivalently 
the input-output inter-relation, trained for one specific 
river basin with exclusive hydrologic characteristics, will 
not necessarily serve for another river basin. In this 
work, we focus our investigations to devise an engine, 
which is adaptable to cater for miscellaneous river 
basins with variant hydrologic characteristics. This 
strategy would in turn expedite the modeling 
procedure, and thus, further hone the learning skills of 
the engine to be applicable across basins with various 

hydrologic conditions. To this end, we employ transfer-
learning literature (Pan and Yang, 2010 [41]) to 
leverage the learning parameters out of a pre-trained 
model extracted in one domain and modularize them 
for the newly investigated basin. In the current study, 
we do not perform traditional fine-tuning in the transfer 
learning literature. Instead, we exploit the learning 
models of the cells to forecast the runoff rates for the 
similar cells. This module would then exclude the need 
to build the individual learning model, from scratch, for 
each basin. Due to data availability limitations, we have 
validated our proposed transfer learning solution across 
the cells within a basin using leave-one-out cross-
validation. This method, however, is generic and can be 
deployed across various cells. 

5.3.1. Transfer Learning Based Upon the Similarity 

As discussed earlier, we develop a neural network 
model for each of the cells within the basin. Now, in 
order to forecast the runoff rates for a new cell, we 
employ the “similar” cells and their corresponding 
models, where the similarity between two cells are 
given by the similarity between their hydrological 
parameters such as precipitation pattern, the soil 
moisture layers, evaporation, temperature and wind 
speed. Each of these parameters constitutes a 
temporal pattern representing a particular property of 
their cell. In this work, we exploit multi-dimensional 
dynamic time warping to compute the similarity 
between theses parameters across the cells. We will 
touch upon this method in Section 5.3.2. Once the 
similar cells for a particular cell like Ci is detected, the 
weighted average of the predictions of the learning 
models of similar cells are utilized to forecast the runoff 
rate for Ci . In the general case, the similarity between 
two cells are given by the similarities among their 
hydrological variables as well as their topographical 
features such as elevation and land cover. We could 
model such a similarity as the convex combination of 
the hydrological and topographical similarities: 

  

s(Ci ! C j ) = "sH (Ci ! C j )+ (1# ")sT (Ci ! C j )

                                            0 $ " $1
     (16) 

In which SH  and ST  are the hydrological and 
topographical similarities, and the parameter ! dictates 
the importance weight for each of these two sets of 
features. In this study, we focus our investigations into 
the hydrological features, and hence !  = 1. 

5.3.2. Dynamic Time Warping 

We utilize the multi-dimensional dynamic time 
warping (DTW) to align and compute the similarity 
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among the hydrological variables of cells as a measure 
of their similarities. This method calculates the distance 
between two temporal sequences even if they are of 
different lengths in which one time-series could be non-
linearly warped along its axis to get aligned to the 
other. The traditional time-series similarity 
measurements such as Euclidean distance is 
extremely restrictive, as they require the time-series to 
be of equal lengths. These methods simply measure 
the point distance of two time-series at the same 
locations, ignoring the potential temporal drift of the 
sequences. Here, however, we are aware that the 
runoff rate at one particular day could be due to the 
rainfall rates at prior days, and hence, DTW is an 
appropriate similarity measurement. As DTW is 
computational intense, we employ the fast DTW 
implementation (FastDTW). Interested readers are 
referred to [42] for a comprehensive explanation of 
dynamic time warping. Here we consider seven 
hydrological variables including rainfall, three layers of 
soil moisture, evaporation, wind speed, and the 
difference between maximum and minimum 
temperature patterns for a particular cell. The DTW 
between each of these features are calculated and 
converted to similarity using Equation 17, and the final 
similarity between two cells are the average of the 
similarities among the features (Equation 18). 

  

!( fi
k " f j

k ) = 1#
dtw( fi

k , f j
k )

dtw( fi
k , f j

k )
i=1

$%
     for     k = 1,2,...,$    (17) 

  
sH (Ci ! C j ) =

1
"

#( fi
k , f j

k ) 
k=1

"

$        (18) 

where  is the number of hydrological parameters used 
to define a particular cell (here, we have considered 
seven hydrological parameters). Figure 4 illustrates the 
similarity heat-map of the cells selected for this study. 
The tuple (i, j)  in this figure gives the similarity of cell 
Ci  to Cj  and the diagonal elements indicate the 
similarity between a cell and itself, and thus, has a  
100% similarity. With the definition of similarity given in 
Equation 18, we will have:  

  
 sH (Ci ! C j ) = sH (C j ! Ci )        (19) 

And hence, the similarity heat-map is symmetric 
along its main diagonal. 

Now, let us assume, for a particular cell Ci , we 
have detected the top M similar cells e.g. 
SCi = Ci

1,Ci
2 , ...,Ci

M{ } , with the corresponding learning 
models of . Each !i

j  in S!i  is a 

variational Bayesian neural network mapping function 
to forecast the runoff rate from the its rainfall rate pCi( )  
for cell Ci , located at (latitude, longitude) = lti , lni( )  
and for the day d, using the cell Cj : 

      (20) 

 

 

Figure 4: Similarity heatmap between the cells using 
Equations 17 and 18. 

Then the forecasted runoff for Ci  is the weighted 
average of runoff rates given by the learning model of 
each of these similar cells: 

      (21) 

With SH  defined in Equation 18. The more similar Cj  
is toCi , the more its learning model would affect the 
forcasted runoff for Ci . The results shown in this work 
is presented with M = 3. 

6. RESULT 

6.1. Pearson Correlation Coefficient 

Let the actual and predicted runoff at a specific 
latitude lt( )  and longitude ln( )  and for a particular day 
(d) be given by r lt, ln, d( )  and r̂ lt, ln, d( ) , respectively. 
The Pearson correlation coefficient between r !( )  and 
r̂ !( )  is given by: 

  

!(r, r̂) = cov[r(lt,ln,d ), r̂(lt,ln,d )]
" r" r̂

                             |!(r, r̂)|#1
       (22) 
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where the ! r  and ! r̂  represent the standard deviation 
of actual and predicted runoff rates, respectively and 
the  indicates the co-variance between the 
variables in its argument. The absolute value of p !( )  is 
a value between 0 and 1, indicating the minimum and 
maximum correlation between r  and r̂ , respectively. 
We use this metric to evaluate the performance of our 
learning models. 

6.2. Prediction Performance 

 Figure 5 represents the Pearson correlation 
coefficient between the actual and predicted runoff 
rates across all hundred cells, achieving the average 
with one standard deviation of 

[ ]( )86.27%  0.0599 0.6227;  1!± " . As shown in this 

figure, except one cell, the rest achieved the correlation 
coefficient of above 0.7. In this figure the minimum, 
maximum and mean of these correlation coefficients 
are shown as, !min ,!max and !mean ,  respectively. 

 

Figure 5: The Pearson correlation coefficient between the 
predicted and actual runoff rates for all cells. In this figure 
minimum,  maximum  and the average  
correlation coefficients are 0.6227, 1 and 0.8627, 
respectively. 

 

Figure 6: Histogram of Pearson correlation coefficient 
between the predicted and actual runoff rates. 

The histogram of the correlation coefficients is 
shown in Figure 6. As this figure illustrates, these 
coefficients are centered around 90% as an indicative 
of the robustness of our proposed model. Figure 7 
illustrates the scatter plot of the predicted versus actual 
runoff for two of the top performing cells located at 
(29.53125o N, 95.71875o W) and (33.21875o N, 99.15625o 
W), respectively. Figure 8 illustrates the Pearson 
correlation coefficient between the predicted and actual 
runoff for each of the hundred cells using i( )  trained 
model of the cell itself !self( )  and ii( )  the transferred 
models of the top three most similar cells !sim( )  with 
the average mean absolute difference with one 
standard deviation of  0.0134 ± 0.012 . As can easily be 
inferred from this figure, these two values are pretty 
close per each individual cell. This observation would in 
turn support our prior claim that the transferred models 
could be harnessed for forecasting, without an explicit 
need to learn an individual model per each cell. We, 
therefore, require to train our neural networks for a 

 

Figure 7: Scatter plot of the predicted versus actual runoff rates for the cell located at (29.53125◦ N, 95.71875◦ W) (left) and 
(33.21875◦ N, 99.15625◦ W) (right). 
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subset of the cells within the basin, and transfer these 
networks to the similar cells, which indeed, reduces the 
computational time considerably. In an ideal case, we 
train the models across the hydrological cells of a big 
basin and transfer these models into a smaller basin 
having similar hydroclimatic conditions. In this work, 
the correlation coefficients of the transferred models 
have been achieved via solely considering the 
hydrological features. Integrating the topographical 
features could further improve the transferred models, 
representing a more realistic scenario. Moreover, once 
both set of the features (hydrological and 
topographical) are considered, the optimal weighting 
between them as well as an appropriate choice of 
similarity definition would be of paramount importance 
and could definitely further hone the skills of the 
transferred models.  

7. CONCLUSION 

Inspired and motivated by the recent advances in 
data-driven models across environmental [43, 44] and 
hydrological sciences [22, 45-50] as a powerful tool to 
approximate the physical-based models, we investigate 
the potential of the artificial intelligence (AI) methods, 
and in particular variational Bayesian neural network to 
predict the runoff rate using the rainfall pattern over 
Brazos River Basin in Texas. We reported the 
prediction performance as the Pearson correlation 
coefficient between the actual and predicted runoff 
rates with average correlation coefficient of 
86.27% ± 0.0599  cross a hundred randomly selected 
cells within the Brazos River Basin. Moreover, this work 
provides the first step towards suggesting an efficient 
similarity-based methodology for transferring a learning 
model developed for a specific hydrologic basin to 

another, characterized by different hydroclimatic 
conditions. In other words, we developed a basin-
agnostic learning framework that has significant 
implications in improving and enhancing the 
representation of hydrologic conditions over different 
regimes. The extensibility of our work allows for 
implementation over catchments across the globe. 
Although, we cross validated our findings among the 
cells within Brazos, the proposed method is generic 
enough to be deployed across miscellaneous basins. 
Our leave-one-out cross-validation achieved the 
average Pearson correlation coefficient of 
85.83% ± 0.0592  Future work includes developing a 
similarity criterion to compare the time-series of the 
hydrological features. Such criterion not only captures 
the temporal drift of the time-series, as is the case in 
DTW, it will also add a parameter of importance for 
each data point of the time-series, and hence, propose 
a more realistic definition of similarity. 
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