Trace Metals and ²¹⁰Po Activity Concentrations in Macroalgae (*Cystoseira Crinita* and *Halopteris Scoparia*) and Seagrass (*Cymodocea Nodosa*) in Izmir Bay, Aegean Turkish Coast

Nurdan Akakçe^{1,2,*}, Aysun Uğur Görgün¹, İnci Tüney Kızılkaya³ and Nevra Öztürk Atay²

¹Ege University, Institute of Nuclear Sciences, Izmir, Turkey

²Ege University Application and Research Center for Testing and Analysis (EGE-MATAL), Izmir, Turkey

³Ege University, Faculty of Sciences, Department of Biology, Izmir, Turkey

Abstract: Two types of macroalgae (*Cystoseira crinita* and *Halopteris scoparia*) and seagrass (*Cymodocea nodosa*) have been evaluated for their bioavailability as biomonitors of trace metals and ²¹⁰Po in Izmir Bay during the period of October 2017-July 2018. The levels of AI, Fe, Zn, Mn and Pb in the samples were determined using energy dispersive x-ray fluorescence spectrometry. The activity concentrations of ²¹⁰Po were measured by alpha spectrometry and the results have shown that *C. nodosa* were found to accumulate the maximum ²¹⁰Po concentration in the winter. Besides, macroalgae (*C.crinita* and *H. scoparia*) were also found to accumulate ²¹⁰Po at different levels in the same area. Additionaly, the investigated trace metals were determined in *H. scoparia* and *C. nodosa* in the winter. A seasonal fluctuations in trace metals and ²¹⁰Po concentrations were observed in the study.

Keywords: ²¹⁰Po, Macroalgae, Seagrass, Marine pollution.

INTRODUCTION

Recent studies in marine environment have been interested in radionuclide and heavy metal concentrations in marine organisms which effect ecological equilibrium. Marine ecosystem produce almost half of the world's oxygen and enable the home to marine species. Radionuclide and trace element concentrations in seawater, increases the pollutant risk factor for marine species. Also, marine pollution is determined with using some marine organism (macroalgae, seagrass etc.) as bioindicator.

Macroalgae are preferred in bio-kinetic studies as bioindicator for radionuclide accumulation in which responded to aquatic pollution (Nonova and Tosheva, 2016). Because marine algae are consumed as food in some cultures and moreover used in cosmetic, medical, chemical and agriculture industries (Al-Masri, Mamish and Budier, 2003), it is important to evaluate the radionuclide and trace metal accumulation abilities of these aquatic organisms. *Halopteris scoparia* (L.) Sauvageau (Phaeophyta, Sphacelariales) is one of the widespread brown macroalgae on the Mediterranean and Atlantic coasts. This species are common in cold and warm waters and distributed on rocky to sand bottom from midlittoral to the infralittoral zones. *H. scoparia* creates most abundant of microhabitats and are known good trap of sediment and also epihytets. (Sánchez-Moyano, *et al.*, 2000, 2002; Patarra *et al.*, 2017). *Cystoseira crinita* Duby is a characteristic brown algae species in Mediterranean basin (Montesanto and Panayoditis, 2001) and is indicated by Huve (1972) as significant organism of infralitoral benthic vegetation in Aegean Sea and recommended by the EU Commission as an indicator species of water quality (EC, 1994). Additionally, in the framework of the Habitat Directive (92/43/EEC), it has been proposed to identify *Cystoseira* species on the Mediterranean coast for the definition of NATURA 2000 habitat code 1170 (Montesanto and Panayoditis, 2001).

Seagrass are very productive marine ecosystems providing physical structure, enhancing biomass, production diversity and substratum for other aquatic organisms (Duffy, 2006). They are perennial and prevalent in marine habitats also have sensitivity to natural and anthropogenic pressures (Sidi et al., 2018). Therefore, seagrasses are favored in monitoring aquatic systems as bioindicator species (Bonanno and Di Martino, 2016). Especially, determination of marine pollution is provided by way of choosing some characteristic organisms as bioindicator for monitoring contaminant in coastal areas. Cymodocea nodosa (Ucria) Ascherson species is one of the five marine flowering plants exist in Turkish costs also with distribution area in the whole Mediterranean (mainly in the Eastern Mediterranean), the Atlantic Ocean. The species generally spreads in sheltered bays and lagoons and prefers fine sand, mud substrate as the

^{*}Address correspondence to this author at the Ege University, Institute of Nuclear Sciences, Izmir, Turkey; Tel: +90 232 3114815; E-mail: nurdanakakce@gmail.com

ground. Also, they can form meadows with other sea meadows and algae species. *C. nodosa* is included in Annex I of the Bern Convention in the Mediterranean (EU, 1981). It is also included in the list of endangered species under Annex II of the Barcelona Convention (Pergent-Martini *et al.*, 2015).

Polonium is a sulphur -group element and a strong affinity for biogenic particulate matter in marine system and contributes the largest radiation dose to marine biota (Karanukara, 2013). Marine organisms (plants and animals) can concentrate trace metals and radionuclides to a relatively high degree in their tissues. Macroalgae have been used in many studies relevant marine pollution because they are abundant and respond rapidly to changes in the ecosystem and costeffective (Bonanno and Martino, 2016, Nonova and Tosheva 2016). Seawater has approximately 35 grams of dissolved salt in 1 L (Henderson, 2016). The main concentration of these salts are Na and CI while more than 82 other elements contributing the seawater content. The elements with the concentration less than 1 mg/kg are called trace elements. These elements are important for biological activities such as P, N, Fe and Cu. But some are known with their toxic effects like Cu and Hg.

Studies on the content of radionuclides and trace metals in macroalgae and seagrass distributed along the Aegean coast are deficient but their classification and distribution are well constituted. Izmir Bay is one of the most polluted estuaries in the Mediterranean Sea (Bizsel and Uslu, 2000). The aim of the present study is to seasonally determine the accumulation of ²¹⁰Po and trace elements (Fe, Al, Zn, Mn and Pb) by macroalgae (*C. crinita and H. scoparia*) and seagrass (*C. nodosa*) found in Izmir Bay.

MATERIAL AND METHODS

Sampling

Izmir Bay was choosen as the sampling area $(38^{\circ} 21.921' \text{ N}- 26^{\circ} 46.915' \text{ E})$ which is one of the largest natural gulfs of the Mediterranean with a total area of 200 km² and a water capacity of 11.5 billion m³. Izmir, which gives its name to the bay and is an important trade, industrial and cultural city, is the largest settlement area around the bay with an area of approximately 88000 ha (izsu.gov.tr). Figure **1** shows the sampling location.

Macroalgae (*C. crinita* and *H. scoparia*) and seagrass (*C. nodosa*) were collected in 2017 and 2018. The samples were carefully cleaned from epiphytes, rinsed with distilled water than dried to constant weight at 55-60°C during 24 h and their weights were determined and then mixed thoroughly, then they were ground and passed through a 2 mm mesh and homogenized.

²¹⁰Po Determinations in Macroalgae (*Cystoseira Crinita* and *Halopteris Scoparia*) and Seagrass (*Cymodocea Nodosa*)

Specific alpha activities were measured by alpha spectrometry system. ²⁰⁹Po (4.88 MeV alpha emission, $t_{1/2}$ =103 years) was used as the internal tracer (Standard Reference Material 4326). The chemical yields using the ²⁰⁹Po tracer ranged between 85 and 90%. The detection limit of the alpha spectrometry system is 0.0003 Bq. Each sample was completely dissolved with 15 ml Aqua Regia in a microwave oven at 100°C for an hour and polonium was spontaneously plated onto a cupper discs in 0.5M HCl in the presence of ascorbic acid to reduce Fe⁺³ to Fe⁺². In order to find

Figure 1: Map of the sampling location.

the optimum conditions for plating, the standard technique given by Flynn (1968) was modified.

Trace elements Analysis

The heavy metal content of the milled plant samples were determined by energy dispersive x-ray fluoresence spectrometry (EDXRF, Rigaku Nex CG). MCA calibration was performed before analysis. Prolene film was used in sample cups. Approximately 3 grams of plant sample was taken in to the sample cup, placed in the instrument and analyzed.

RESULTS AND DISCUSSION

In our study we determined the concentrations of 5 trace elements (Fe, Al, Zn, Mn, Pb) found in seawater composition in algae and seagrass. Also the ²¹⁰Po activity concentrations seasonally determined from two brown macroalgae and one seagrass species collected from Izmir Bay.

Figure **2** shows the ²¹⁰Po activity concentrations for the algae (*Cystoseira crinita, Halopteris scoparia*) and seagrass (*Cymodocea nodosa*) samples in each season.

The average dry weight ²¹⁰Po activity concentration values in the algae (*C. crinita, H. scoparia*) and in seagrass (*C. nodosa*) samples are 34.7 Bq kg⁻¹, 47.4 Bq kg⁻¹ and 54.0 Bq kg⁻¹ respectively. The highest ²¹⁰Po activity concentration (100.94 Bq kg⁻¹ dw) was observed during winter in the *C. nodosa*. The minimum ²¹⁰Po activity concentration (7.2 Bq kg⁻¹ dw) was determined in the *H. scoparia* of autumn samples. The seagrass (*C. nodosa*) samples has a higher mean

²¹⁰Po concentration compared to the algae (*C. crinita*, H. scoparia) samples. The activity concentration of ²¹⁰Po in *H. scoparia* and *C. nodosa* is higher during the winter time compared to the other seasons. The algae species (C. crinita and H. scoparia) shows the opposite trend seasonally in this study (Figure 2). Uddin et al. (2015) indicated that the observed lower ²¹⁰Po concentration in seawater might be a result of higher winter time productivity and abundance of seaweeds in the Gulf. Although seagrass are accepted the marine forest (Waycott et al., 2006), investigation of ²¹⁰Po concentrations in seagrass are very limited in the world 1998; Skwarzec et al. (Sam et al. 2003; Suriyanarayanan et al., 2010) (Table 2). The data obtained in the present study compared with the activity reported from around the globe (Table 1). Among previous studies our results showed the highest ²¹⁰Po concentrations. Uddin *et al.* (2015) reported that seaweeds concentrations of ²¹⁰Po in the range of 16.2– 19.22 Bg kg⁻¹ from samples collected from the Kuwait marine environment. ²¹⁰Po activity concentrations in the Cystoseira sp. published in the literature are in the ka⁻¹ 4.60-32.60 Βa drv weight. range of Suriyanarayanan et al. (2010) reported that the concentrations of ²¹⁰Po in seaweeds (Sargassum wightii and Grateloupia filicina) collected from the Mallipattinam ecosystem were 26 and 10 Bq kg⁻¹(fresh weight), respectively. Skwarzec et al. (2003) indicated that the lowest polonium concentration was found in *Cladophora rupestris* (0.12 Bq kg⁻¹ wet weight) and the highest in Chara crinita (1.12 Bq kg⁻¹wet weight) collected in February 1988 from Puck Bay. Nonova and Tosheva (2016) reported lower ²¹⁰Po values (3.5-5.8 Bg kg⁻¹ dry weight) for *C. crinita* distributed along the Bulgarian Black Sea. Sam et al. (1998) found that ²¹⁰Po

Figure 2: Concentration of ²¹⁰Po in macroalgae (*Cystoseira crinita* and *Halopteris scoparia*) and seagrass (*Cymodocea nodosa*) in Izmir Bay.

Table 1: Concentration of ²¹⁰Po in Marine Macroalgae from Various Marine Area (Bq kg⁻¹)

Algae pecies	²¹⁰ Po (Bq/kg)	Location	Reference		
Turbinaria sp.	1.60	Sudan (Red Sea)			
Sargassum sp.	12.60	Sudan (Red Sea)	(Sizelybetim Som and Hassana 2008)		
Padina sp.	15.00 Sudan (Red Sea)		(Sireiknatim, Sam and Hassona, 2008)		
<i>Cyctoseria</i> sp.	32.20	Sudan (Red Sea)			
Stypopodium zonale	23.84	Syria (Tartous)			
Stypopodium zonale	15.17	Syria (Ras İbn Hani)			
Sargassum vulgare	23.31	Syria (Tartous)			
Padina Pavonia	24.43	Syria (Tartous)	(Al Marrish and Dudier 2002)		
<i>Cystoseira</i> sp.	8.08	Syria (Tartous)	(Al-Masri, Mamish and Budler, 2003)		
<i>Cystoseira</i> sp.	26.40	Syria (Lattakia)			
Cystoseira Barbata	23.66	Syria (Tartous)			
Cystoseira ercogovici	12.32	Syria (Ras Samara)			
Ulva rigida	2.70	Bulgaria (Tuzlata)			
Enteromorpha intestinalis	5.20	Bulgaria (Tuzlata)			
Cladophora vagabunda	5.50	Bulgaria (Tuzlata)			
Ceramium rubrum	6.20	Bulgaria (Tuzlata)	(New york and Task york 0010.)		
Cystoseira crinita	4.60	Bulgaria (Tuzlata)	(Nonova and Tosheva, 2016)		
Ulva rigida	3.40	Bulgaria (Burgas)			
Enteromorpha intestinalis	5.80	Bulgaria (Burgas)			
Ceramium rubrum	5.70	Bulgaria (Burgas)			
Fucus serratus	7.80	France (Barfleur)	(October et al. 2007)		
Fucus serratus	12.00	France (Granville)	(Contant et al., 2007)		
Fucus vesiculosus	4.50	France (Barfleur)	(Correction Lookans and Circon (1995)		
Fucus vesiculosus	13.70	France (Priou)	(Germain, Lecierc and Simon, 1995)		
Halimeda sp.	13.70	Sudan (Port Sudan)			
<i>Cystoseira</i> sp.	32.60	Sudan (Port Sudan)	(Com et al. 1000)		
Padina sp.	15.00	Sudan (Port Sudan)	(Sam et al., 1998)		
Sargassum sp.	36.40	Sudan (Port Sudan)			
Ulva lactuca	2.70	Portugal (Cascais)			
Codium tomentosum	2.00	Portugal (Cascais)			
Ploccamium cartilagineum	5.20	Portugal (Cascais)	(Operative 2014)		
Gelidium sesquipedale	8.60	Portugal (Cascais)	(Carvaino, 2011)		
Fucus vesiculosus	9.10	Portugal (Cascais)			
Sacchoriza polyschides	1.60	Portugal (Cascais)			
Sargassum boveanum	22.50-25.60	Kuwait	(Iddia Aba and Dabbabani 2045)		
Sargassum oligocystum	20.20-22.50	Kuwait	(Uddin, Aba and Bebhehani, 2015)		
Seaweeds	16.50	India (Parangipettai)	(Raja and Hameed, 2010)		
Cystoseira crinita	34.70	Turkey (Izmir Bay)	The second		
Halopteris scoparia	47.40	Turkey (Izmir Bay)	I NIS STUDY		

concentration in algae collected from the fringing reef area at Port Sudan ranged from 13.7 Bq kg⁻¹ green algae (*Halimeda* sp.) to 36.4 Bq kg⁻¹ brown algae (*Sargassum* sp.).

Metal concentrations in macroalgae species are shown in Figure **3**, **4** and **5**. Our heavy metal concentration results in the samples are compared with different locations. In the study, the maximum value of

Species of Seagrass	²¹⁰ Po (Bq/kg)	Location	Reference		
Cymadocea serrulata	11.00	India (Tamil Nadu)	(Suriyanarayanan <i>et al</i> ., 2010)		
Seagrass	22.70	Sudan (Port Sudan)	(Sam <i>et al</i> . 1998)		
Cladophora rupestris	0.12	(Puck Bay) S. Baltic	(Skwarzec <i>et al.</i> , 2003)		
Cymodocea nodosa	54.00	Turkey (Izmir Bay)	This study		

Table 2: Concentration of ²¹⁰Po in Marine Seagrasses from Various Marine Area (Bq kg⁻¹)

Figure 3: Concentrations of some trace metals (ppm) in Cystoseira crinita.

zinc is found in C. nodosa (8.32 ppm) in the spring and the minimum in C. crinita (3.28 ppm) in the autumn. The maximum of manganese is detected in *H. scoparia* (75.9 ppm) and the minimum in C. crinita (20 ppm) in the spring. In this study, the maximum concentration of lead is found in Halopteris scoparia in the winter, with a value of 3.91 ppm and a minimum of C. nodosa (2.55 ppm) in the winter. The levels of Fe and Al in the samples are remarkably higher than those of the other metals studied. But Fe and Al occur naturally in the environment. Aluminum is found in structure of the earth crust as third most abundant element (~ 8 %) (Zeraatkar et al., 2016; Dominguez-Renedo et al., 2019). Fe, Zn and Mn are necessary usual metabolic functions and generally used as cofactors of enzymes and/or as a component for constitution of cell structure (Burins et al., 2000). Statistical analyses (One-Sample Kolmogorov-Smirnov statistical test) were performed to check the normality of the raw data for each algal group. All the data followed a normal distribution (p>0.05). There is a stronger positive correlation between Fe and Zn concentrations in H. scoparia (r = 0.992, p<0.01). Pb is dangerous toxic heavy metal at even low level in biological system (Haferburg and Kothe, 2007). In the winter, in H. scoparia and C. nodosa metal concentrations decrease in the following order: AI>Fe>Mn>Zn>Pb, while in C. crinita the sequence is AI>Fe.

The results in the study for metal concentrations in C. crinita of the investigated location is compared with the findings of Kucuksezgin and Akcal (2009) from the same station and the mean concentration of Fe is comparable with their study but our Zn concentration in Cystoseira crinita is lower and Mn concentration is higher than their study. Table 3 shows the concentrations of trace elements in the macroalgae (C. Crinita) from various marine area. Storelli et al. (2001) pointed out that in benthic macrophytes, Zn levels not exceeding 100 ppm are suggested as background for nonpolluted areas. Kravtsova et al. (2015) reported that Al, Mn, Fe, and Zn in the C. crinita collected from marine protected areas of Crimea (Black Sea) are 180, 34.1, 148, 31.2 ppm, respectively. As indicated by Topcuoglu et al. (2003), it is not easy to compare the heavy metal concentrations in macroalgae reported from other marine environment with present results due to wide variations of the environmental parameters (salinity, temperature, pH, light, oxygen, nutrient concentrations, complexing agents) and systematic position of the algae.

CONCLUSION

In the study, ²¹⁰Po and trace metals are seasonally quantified in the macroalgae (*C. crinita, H. scoparia*) and in seagrass (*C. nodosa*) samples found in Izmir

Figure 4: Concentrations of trace metals in Halopteris scoparia.

Figure 5: Concentrations of trace metals in Cymodocea nodosa.

Table 3:	Concentrations of Trace Elements in C	Cystoseira Crinita from Various Marine Area (ppm	I)
		J	•

Location	Al (ppm)	Mn (ppm)	Fe (ppm)	Pb (ppm)	Zn (ppm)	References
Crimea, Black Sea	180	34.10	148	-	31.20	Kravtsova et al. (2015)
Karantinnaya Bay (Crimea)	833	37.40	457	-	34.50	Kravtsova et al. (2014b)
Yalta beach (Crimea)	1458	71	650	-	54	Kravtsova et al. (2014a)
Batiliman tract	350	124	1400	-	85.40	Molchanov et al. (1988)
Cape Martyan Nature Reserve	1300	298	1100	-	46.40	Molchanov et al. (1988)
Sinop	4500	73	3414	-	85.80	Guven <i>et al</i> . (1992)
Eastern part of the Black Sea (Turkey)	-	22.20	-	-	61.20	Topcuoglu <i>et al</i> . (2003)
Caucasus coast	-	41.70	140	-	-	Saburin,M.Y. (2004)
Urla, Izmir	-	8.43	212.14	0.0083	27.17	Akcal and Kucuksezgin (2009)
Izmir Bay	2692.50	20	262.25	-	3.28	This study

Bay. It can be concluded that *C. nodosa* and *H. scoparia* are suitable to be used as a biomonitor for 210 Po especially in winter and both of them also could be used as biomonitors for trace metal pollution but further studies are required to provide comparative data on 210 Po and trace metal levels in macroalgae (*H. scoparia*) and seagrass (*C. nodosa*).

ACKNOWLEDGEMENTS

This research work is supported by a grant from Ege University Scientific Research Project, Contract No: FDK-2018-20143 and EGE MATAL.

REFERENCES

- [1] Akcal I. and Kucuksezgin F. "Ege Denizi Kıyılarında Gorulen Kahverengi Alg Cystoseira sp. de Agır Metal Birikimi", Ege Journal of Fisheries and Aquatic Sciences, 2009; 26(3): 159-163.
- [2] Al-Masri MS, Mamish S and Budier Y. (2003) "Radionuclides and trace metals in eastern Mediterranean Sea algae", Journal of Environmental Radioactivity 2013; 67(2): 157-168. <u>https://doi.org/10.1016/S0265-931X(02)00177-7</u>
- [3] Bizsel N, and O Uslu. "Phosphate, nitrogen and iron enrichment in the polluted Izmir Bay, Aegean Sea." Marine Environmental Research, 2000; 49.2:101-122. <u>https://doi.org/10.1016/S0141-1136(99)00051-3</u>
- [4] Bonanno G and Di Martino V. "Seagrass Cymodocea nodosa as a trace element biomonitor: Bioaccumulation patterns and biomonitoring uses", Journal of Geochemical Expl. 2016; 169: 43-49. https://doi.org/10.1016/j.gexplo.2016.07.010
- [5] Carvalho FP. "Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains", Journal of Environmental Radioactivity 2011; 102(5): 462-472. <u>https://doi.org/10.1016/j.jenvrad.2010.10.011</u>
- [6] Connan O, Germain P, Solier L. and Gouret, G. "Variations of 210Po and 210Pb in various marine organisms from Western English Channel: contribution of 210Po to the radiation dose", Journal of Environmental Radioactivity 2007; 97(2-3): 168-188 https://doi.org/10.1016/j.jenvrad.2007.04.004
- [7] Domínguez-Renedo O, Marta Navarro-Cuñado A, Ventas-Romay E. and Asunción Alonso-Lomillo, M. "Determination of aluminium using different techniques based on the Al(III)morin complex", Talanta. 2019; (196): 131-136. <u>https://doi.org/10.1016/j.talanta.2018.12.048</u>
- [8] Duffy J. Emmett. "Biodiversity and the functioning of seagrass ecosystems." Marine Ecology Progress Series 311, 2006; 233-250.
- [9] EC (1994) Proposal for a Council Directive on the ecological quality of water-OJ C 222, 10.8.1994; COM(93) 680; Bull. 6-1994, point 1.2.179; Bull. 12-1994, point 1.2.206; http://europa.eu/bulletin/en/9601/p103149.htm.
- [10] European Community, Bern Convention (Annex 1), 1981. https://eurlex.europa.eu/legalcontent/EN/TXT/?uri=LEGISSUM%3AI28 050.
- Flynn WW. "The determination of low levels of polonium-210 in environmental materials." Analytica chimica acta 1968; (43): 221-227. https://doi.org/10.1016/S0003-2670(00)89210-7
- [12] Germain P, Leclerc G and Simon S. "Transfer of polonium-210 into Mytilus edulis (L.) and Fucus vesiculosus (L.) from the baie de Seine (Channel coast of France)", Science of the Total Environment, 1995; 164(2): 109-123. https://doi.org/10.1016/0048-9697(95)04434-3
- [13] Guven KC, Topcuoglu S, Kut D, Esen N, Erenturk N, Saygi N, Ozturk B, Metal uptake by Black Sea algae. Bot. Mar. 1992; 35 (4): 337-340. https://doi.org/10.1515/botm.1992.35.4.337
- [14] Haferburg G, Kothe E. "Microbes and metals: interactions in the environment". J Basic Microbiol 2007; 47: 453-467. <u>https://doi.org/10.1002/jobm.200700275</u>
- [15] Henderson GM. 2016 "Ocean trace element cycles."Phil. Trans. R. Soc. A 374: 20150300. https://doi.org/10.1098/rsta.2015.0300
- [16] https://www.izsu.gov.tr/tr/TesisDetay/1/6/2?AspxAutoDetectC ookieSupport=1.
- [17] Huvé H. Aperçu sur la distribution en mer Egée de quelques espèces du genre Cystoseira (Phéophycées, Fucales). Soc. Phycol. France 1972;(17): 22-37.

- [18] Karanukara N and Baskaran M. Proceedings of the 2nd International Conference on Po and Radioactive Pb Isotopes, India, Mangalore, 2013
- [19] Kravtsova AV, Milchakova NA, Frontasyeva MV." The features of trace elements accumulation by macroalgae Cystoseira from the coastal water areas of the Crimea (the Black Sea)" Ecosyst. Optimi. Protect. 2014a; (10): 146-158.
- [20] Kravtsova AV, Milchakova NA, Frontasyeva MV. "Elemental accumulation in the Black Sea brown algae Cystoseira studied by neutron activation analysis. Ecol. Chem. Eng. 2014b; 21(1): 19-23. <u>https://doi.org/10.2478/ecces-2014-0001</u>
- [21] Kravtsova AV, Milchakova NA and Frontasyeva MV. "Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea)", Marine Pollution Bulletin. 2015; 97(1-2): 548-554.

https://doi.org/10.1016/j.marpolbul.2015.02.040

- [22] Molchanov EF, Maslov II, Tkachenko FP. Effect of marine pollution on the content of polyvalent metals in the dominant species of the Black Sea macrophyte algae. Sci. Notes Nikitsky Bot. Gard, 1988; 104, 83-92.
- [23] Montesanto B. and Panayoditis, P. "The Cystoseira spp. communities from the Aegean Sea (NE Mediterranean)", Mediterranean Marine Science 2001; 2(1): 57-67. https://doi.org/10.12681/mms.276
- [24] Nonova T and Tosheva Z. "90 Sr, 210 Pb, 210 Po and Ra isotopes in marine macroalgae and mussel Mytilus galloprovincialis from the Bulgarian Black Sea zone", Journal of Radioanalytical and Nuclear Chemistry 2016; 307(2): 1183-1194.
 - https://doi.org/10.1007/s10967-015-4502-x
- [25] Patarra RF, Carreiro AS, Lloveras AA, Abreu MH, Buschmann AH and Neto AI. "Effects of light, temperature and stocking density on Halopteris scoparia growth", Journal of Applied Phycology 2017; 29(1): 405-411. <u>https://doi.org/10.1007/s10811-016-0933-1</u>
- [26] Pergent-Martini C, Pergent G. "Marine phanerogams as a tool in the evaluation of marine trace-metal contamination: An example from the Mediterranean" Int. J. Environ. Pollut, 2000; (13): 1-6. <u>https://doi.org/10.1504/IJEP.2000.002313</u>
- [27] Raja P., and Hameed PS. "Study on the Distribution and Bioaccumulation of Natural Radionuclides, 210Po and 210 Pb in Parangipettai Coast, South East Coast of India", Indian Journal of Marine Sciences, 2000; (39): 449-455.
- [28] Saburin M. Yu. 2004. Phytocenoses of the Black Sea Cystoseira: Structure, Recoveryand Prospects of Usage. PhD Thesis, Moscow, p. 20
- [29] Sam Adam Khatir, Ahamed Mustafa MO, El Khangi FA, Nugim Y El, Holm Elis S. "Radioactivity Levels in the Red Sea Coastal Environment of Sudan", Marine Pollution Bulletin 1998; 36(1): 19-26. <u>https://doi.org/10.1016/S0025-326X(98)90025-X</u>
- [30] Sánchez-Moyano JE, Estacio FJ, Garcia-Adiego EM, Garcia-Gomez JC. "The Molluscan Epifauna of the Alga Halopteris Scoporia in Southern Spain as a Bioindicator of Coastal Environmental Conditions", Journal of Molluscan Studies 2000; 66(4): 431-448 https://doi.org/10.1093/mollus/66.4.431
- [31] Sánchez-Moyano JE, Estacio FJ, Garcia-Adiego Estacio F, EM, Garcia-Gomez. "Effect of environmental factors on the spatial variation of the epifaunal polychaetes of the alga Halopteris scoparia in Algeciras Bay (Strait of Gibraltar)", Hydrobiologia, 2002; (470): 133-148 https://doi.org/10.1023/A:1015680106097
- [32] Sidi N, Aris AZ, Mohamat F and Looi LJ. "Tape seagrass (Enhalus acoroides) as a bioindicator of trace metal contamination in Merambong shoal, Johor Strait, Malaysia" 2018; (126): 113-118. <u>https://doi.org/10.1016/j.marpolbul.2017.10.041</u>

- Sirelkhatim DA, Sam AK and Hassona RK. "Distribution of [33] 226Ra-210Pb-210Po in marine biota and surface sediments of the Red Sea, Sudan", Journal of Environmental Radioactivity 2008; 99(12): 1825-1828. https://doi.org/10.1016/j.jenvrad.2008.07.008
- Skwarzec B, Ulatowski J, Strumińska DI and Falandysz [34] J."Polonium 210Po in the phytobenthos from Puck Bay", Journal of Environmental Monitoring 2003;5(2): 308-311. https://doi.org/10.1039/b210341a
- [35] Storelli MM, A Storelli, and GO Marcotrigiano. "Heavy metals in the aquatic environment of the Southern Adriatic Sea, Italy: macroalgae, sediments and benthic species." Environment International 2001; 26: 7-8, 505-509. https://doi.org/10.1016/S0160-4120(01)00034-4
- Suriyanarayanan S, Brahmanandhan GM, Samivel K, [36] Ravikumar S and Hameed PS. "Assessment of 210Po and 210Pb in marine biota of the Mallipattinam ecosystem of Tamil Nadu, India", Journal of Environmental Radioactivity, 2010; 101(11): 1007-1010. https://doi.org/10.1016/j.jenvrad.2010.06.003

Received on 29-11-2019

Accepted on 5-1-2020

Published on 13-1-2020

DOI: https://doi.org/10.12974/2311-8741.2020.08.3

© 2020 Akakçe et al.; Licensee Savvy Science Publisher.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

- Topcuoglu S, Ergül HA, Baysal A, Ölmez E, Kut D. [37] "Determination of radionuclide and heavy metalconcentrations in biota and sediment samples from Pazar and Rize stations in the eastern Black Sea". Fresenius, Environ. Bull 2003; 12(7): 695-699.
- Uddin S, Aba A and Bebhehani M. "Baseline concentration of [38] 210Po and 210Pb in Sargassum from the northern Gulf", Marine Pollution Bulletin. 2015; 90(1-2): 330-333. https://doi.org/10.1016/j.marpolbul.2014.09.029
- [39] Waycott M, procaccini G, Les DH, Reusch TBH. "Seagrass Evolution, Ecology and Conservation: A Genetic Perspective. In Larkum A, WD, Orth RJ, Duarte C. (eds). Seagrasses: Biology, Ecology and Conservation 2006;25-50. https://doi.org/10.1007/1-4020-2983-7_2
- Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR [40] and McHenry MP. "Potential use of algae for heavy metal bioremediation, a critical review", Journal of Environmental Management 2016; (181): 817-831. https://doi.org/10.1016/j.jenvman.2016.06.059