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Modeling Soil Futures: Integrating Classic and Emerging
Approaches to Water Erosion

Hamid Alipour’ and Saeed Shojaei

Department of Science, Yazd University, Yazd, Iran

Abstract: Soil erosion by water remains one of the most pressing forms of land degradation, undermining agricultural
productivity, ecosystem services, and global food security. Over the past decades, diverse modeling approaches have
been developed to quantify and predict soil erosion, ranging from classical empirical models to advanced machine
learning and hybrid frameworks. This review synthesizes the evolution of erosion modeling, highlighting both the
historical foundations and emerging directions. Empirical models such as USLE and RUSLE provided the first
standardized and widely adopted methods, while process-based models like WEPP and EUROSEM advanced
mechanistic understanding but faced limitations due to extensive data demands. The integration of Geographic
Information Systems (GIS) and Remote Sensing (RS) transformed erosion modeling by enabling spatially explicit risk
assessments at watershed and regional scales. More recently, machine learning algorithms—including Random Forests,
Support Vector Machines, and deep learning architectures—have demonstrated superior predictive power, although
challenges of interpretability, transferability, and data dependency remain unresolved. Hybrid and integrated models
now represent the state-of-the-art frontier, combining empirical transparency, process-based rigor, and Al-driven
adaptability. Future-oriented perspectives, including GeoAl, digital twins, cloud-based platforms, and participatory
modeling approaches, offer transformative potential. These innovations are particularly critical under non-stationary
conditions driven by climate change and land-use transformations, which demand dynamic, probabilistic, and
stakeholder-inclusive frameworks. The review concludes that no single paradigm is sufficient to capture the complexity
of water erosion. The way forward lies in integrated, multi-scale, and uncertainty-aware modeling systems that bridge
scientific precision with policy relevance, supporting sustainable land management and climate adaptation in the coming
decades.

Keywords: Water erosion, Soil erosion modeling, RUSLE, WEPP, GIS, Remote Sensing, Machine Learning,
GeoAl, Hybrid models, Digital twins.

INTRODUCTION compounded challenges for land managers. Water
erosion is thus not only a local agronomic concern but
also a global environmental issue. Its impacts extend
into socio-economic domains, including food security,
rural livelihoods, and infrastructure stability [9].
Reservoir sedimentation, for instance, reduces the
lifespan of hydropower dams and irrigation systems,
creating long-term economic costs. Additionally, soil
erosion releases stored carbon into the atmosphere,
linking erosion processes with broader debates on
climate change mitigation and adaptation [10]. The
urgency of addressing water erosion is therefore clear,
and modeling has become a central tool in
understanding, predicting, and managing its impacts
[11, 12]. The modeling of water erosion has a long
history, beginning with empirical formulations derived
from plot-scale experiments in the mid-twentieth
century. The Universal Soil Loss Equation (USLE),
later revised as RUSLE, provided the first standardized
framework for predicting average annual soil loss
based on rainfall erosivity, soil erodibility, topography,
cover-management, and conservation practices. These
models, though empirical in nature, achieved
widespread adoption because of their simplicity,
transparency, and policy relevance [13]. The 1980s
and 1990s saw the rise of process-based models, such
as the Water Erosion Prediction Project (WEPP) and
the European Soil Erosion Model (EUROSEM). These

Soil erosion by water is one of the most widespread
forms of land degradation, threatening agricultural
productivity, water quality, and ecosystem services
across the globe. The removal of fertile topsoil not only
reduces crop yields but also alters hydrological cycles,
increases sedimentation in rivers and reservoirs, and
accelerates land degradation processes that
undermine sustainable development. According to
recent estimates by the Food and Agriculture
Organization (FAO) and the Intergovernmental Panel
on Climate Change (IPCC), more than 24 billion tons of
fertile soil are lost annually worldwide, with water
erosion accounting for the majority of this degradation
[1-3]. This phenomenon is particularly critical in regions
experiencing intense rainfall events, steep topography,
and fragile soils, but it is also increasingly relevant in
temperate landscapes where land-use intensification
and climate change are altering erosion dynamics [4].
In Mediterranean regions, for example, the combination
of seasonal rainfall variability, olive monocultures, and
overgrazing has produced severe erosion hotspots. In
tropical and subtropical areas, deforestation and
unsustainable agricultural practices exacerbate erosion
rates, while in arid and semi-arid regions, water erosion
interacts with desertification processes [5-8], creating
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and sediment transport, offering a more mechanistic
understanding of erosion dynamics. While powerful,
these models also revealed the challenges of high data
requirements and calibration difficulties, particularly in
data-scarce regions of the Global South. In parallel, the
integration of Geographic Information Systems (GIS)
and Remote Sensing (RS) expanded the spatial scope
of erosion modeling [14]. By transforming model
parameters into geospatial layers, GIS-based
approaches enabled the mapping of erosion risks at
watershed, regional, and national scales. Remote
sensing technologies, ranging from Landsat to Sentinel
and UAV platforms, provided unprecedented access to
vegetation indices, land-use dynamics, and digital
elevation models, which significantly enriched the
parameterization of erosion models [15]. The
twenty-first century has witnessed a surge in data
availability, computational capacity, and
methodological innovation. Machine learning and
artificial intelligence have emerged as transformative
tools, capable of uncovering nonlinear relationships
between environmental drivers and erosion processes
[16-18]. Random Forests, Support Vector Machines,
and deep learning architectures have achieved
remarkable predictive performance, particularly when
combined with remote sensing datasets. Yet,
persistent challenges remain [19, 20]. Data scarcity
continues to limit model applicability in many parts of
the world. High-resolution rainfall records, soil hydraulic
properties, and long-term field measurements are often
unavailable, constraining the calibration and validation
of both process-based and ML-driven models [21].
Uncertainty quantification is another pressing issue:
few models rigorously propagate uncertainties from
input datasets through to final predictions, leading to
risks in policy applications. Transferability across
regions is also limited, as models calibrated in one
watershed often fail when applied to others with
different  climatic or geomorphic  conditions.
Computational complexity further complicates the use
of advanced models, particularly in developing regions
where resources are scarce. Moreover, many erosion
models remain designed primarily for scientists, with
interfaces and outputs poorly aligned with the needs of
policymakers, land managers, and local communities.
Bridging this gap requires not only technical
improvements but also institutional and participatory
innovations. Given these limitations, the field is moving
toward a new paradigm that emphasizes integration,
adaptability, and inclusivity. Future-oriented
perspectives include the development of GeoAl, which
merges geospatial data with artificial intelligence to
provide real-time erosion predictions; digital twins of
watersheds, which create continuously updated virtual
replicas capable of scenario testing; and cloud-based
platforms, which democratize access to big data and

advanced modeling tools. Equally important is the
integration of climate change scenarios into erosion
modeling [22-24]. Non-stationary conditions demand
probabilistic frameworks that can represent ranges of
possible futures, rather than single deterministic
predictions. Participatory approaches, such as
participatory GIS and interactive decision-support
systems, are also gaining momentum, ensuring that
erosion models are not only scientifically rigorous but
also socially relevant. This evolution suggests that the
future of water erosion modeling will not be defined by
the dominance of any single paradigm but by the
integration  of  multiple  approaches—empirical,
process-based, GIS/RS, machine learning, and hybrid
systems—uwithin flexible, multi-scale, and
uncertainty-aware frameworks [25, 26]. Against this
backdrop, the aim of this review is to provide a
comprehensive synthesis of the current state of water
erosion modeling, critically evaluating the strengths
and limitations of different approaches, and identifying
emerging  opportunities and  challenges. By
systematically examining empirical, process-based,
GIS/RS, machine learning, hybrid, and future-oriented
frameworks, this article seeks to clarify how erosion
modeling can evolve into a more robust, adaptive, and
policy-relevant tool. Ultimately, the paper aims to
highlight pathways toward integrated and participatory
modeling systems capable of supporting sustainable
land management and climate adaptation strategies in
the decades to come. While several reviews have
addressed erosion modeling from specific angles, few
have provided a unified cross-paradigm synthesis
linking classical models with Al-driven and GeoAl
frameworks. The novelty of this review lies in bridging
these traditionally separate domains to propose an

integrative perspective that connects scientific
modeling with real-world engineering and policy
applications.

MATERIALS AND METHODS

This study adopts a systematic review and
conceptual framework approach to explore the future of
water erosion modeling, its challenges, and emerging
methodologies. The research design consisted of the
following steps:

1 Literature Collection

* A comprehensive search of peer-reviewed
articles, reports, and book chapters
published between 2000 and 2025 was
conducted using databases such as Web of
Science, Scopus, and Google Scholar.

* Keywords included combinations of: soil
erosion, water erosion modeling, future
perspectives, climate change impacts,
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remote  sensing,  machine learning, multi-scale modeling, participatory
process-based models, RUSLE, WEPP, approaches).

GeoAl.
RESULTS

2

Inclusion and Exclusion Criteria

Studies were included if they addressed (i)
modeling of soil erosion caused by water,

(i) advancements in simulation approaches,

or (iii) challenges under future climate and
land-use scenarios.

Papers focused exclusively on wind erosion

or non-hydrological processes were
excluded.

3  Thematic Categorization
Selected studies were categorized into

4

5

6

thematic areas:

a. Traditional and Process-Based Models
(e.g., RUSLE, WEPP, EUROSEM)

b. GIS and Remote Sensing-Based
Approaches

c. Machine Learning and Data-Driven Models
d. Hybrid and Integrated Models (coupling
physical and Al-based approaches)
e. Future-Oriented Perspectives
change, big data, policy integration).

(climate

Comparative Analysis

Each category was analyzed with respect to
input data requirements, spatial and
temporal resolution, computational
complexity, scalability, and capacity for
integration with new technologies.

Special attention was given to recent
innovations, including GeoAl, cloud
computing, digital twins, and Earth

observation datasets.

Expert Consultation

To validate the framework, expert opinions
were synthesized from existing review
papers and technical reports published by
organizations such as the FAO, European
Commission, and USDA.

Framework for Future Directions

Based on the synthesis, a conceptual
framework was developed highlighting
major challenges (data availability, model
transferability, uncertainty quantification)
and innovative pathways (Al integration,

3.1. Conventional and Process-Based Models

Empirical and process-based models form the
historical backbone of water erosion research, and
despite the emergence of more advanced approaches,
they continue to play a fundamental role. Among them,
the Universal Soil Loss Equation (USLE) and its
subsequent revision (RUSLE) remain the most widely
implemented due to their simplicity and adaptability
across diverse geographic contexts. The general
formulation of RUSLE is expressed in Equation (1)
[27-30]:

A=R-K-LS-C-P (1)

where A represents the mean annual soil loss, and the
multiplicative factors account for rainfall erosivity (R),
soil erodibility (K), slope length and steepness (LS),
cover-management (C), and conservation practices (P).
RUSLE has become popular largely because of its
ease of application and transparency, making it a
preferred tool in policy-oriented studies and land
management planning. However, it remains limited to
long-term average soil loss estimates and does not
capture short-term variability, sediment deposition, or
gully formation.

Building upon RUSLE, the Modified Universal Soil
Loss Equation (MUSLE) introduced a refinement by
replacing the rainfall factor with runoff volume and peak
discharge, thereby enabling predictions at the event
scale. This adjustment, shown in Equation (2):

Sed =11.8-(Q - q,)**®-K-C-P-LS 2)

demonstrates the evolution from purely empirical
relationships toward a closer connection with
hydrological processes. MUSLE has been especially
useful in linking erosion modeling with watershed
hydrology, yet it still inherits some of the constraints of
empirical approaches, particularly the need for regional
calibration of input parameters. In parallel,
process-based models such as the Water Erosion
Prediction Project (WEPP), the European Soil Erosion
Model (EUROSEM), and the Limburg Soil Erosion
Model (LISEM) have sought to simulate erosion by
explicitly representing the physical processes of rainfall
impact, infiltration, surface runoff, detachment,
transport, and deposition. Unlike the empirical
formulations of RUSLE or MUSLE, these models
operate at finer temporal resolutions and can provide
event-based predictions. For example, WEPP can
simulate continuous hydrological and erosion
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processes, producing not only soil loss estimates but
also runoff volumes, sediment size distributions, and
spatial patterns of erosion across a watershed.
EUROSEM and LISEM, in contrast, are typically
applied to individual storm events and emphasize the
spatial distribution of erosion within catchments,
drawing heavily on DEMs and land use data. The
advantages of process-based models are clear: they
provide mechanistic insights, allow scenario testing for
different land management practices, and are more
responsive to climate and land-use changes.
Nevertheless, these strengths come at the cost of
demanding high-resolution input data and significant
calibration effort, often making them impractical for
regions with limited monitoring infrastructure. Empirical
models, by contrast, while less precise in process
representation, remain accessible and cost-effective
tools that continue to dominate large-scale erosion risk
assessments. Thus, conventional and process-based
models should not be regarded as competing
paradigms but rather as complementary tools.
Empirical models such as RUSLE are effective in
producing rapid, large-area erosion estimates suitable
for policy and land management, while process-based
models like WEPP or EUROSEM are indispensable for
research that requires detailed understanding of
event-driven erosion dynamics. The continued
relevance of these models lies not only in their
historical legacy but also in their ability to serve as
benchmarks and foundations for hybrid and
next-generation modeling frameworks.

3.2. GIS- and Remote Sensing-Based Approaches

The integration of Geographic Information Systems
(GIS) and Remote Sensing (RS) has fundamentally
reshaped the way soil erosion is modeled and mapped.
Unlike purely empirical formulations, which were
initially developed at plot scale, GIS- and RS-based
approaches allow the extrapolation of erosion
processes across larger spatial domains by
transforming model factors into geospatial layers [31].
A typical example is the spatial implementation of the
RUSLE equation, where each factor is computed for
individual grid cells rather than for an entire plot. The
gridded formulation is expressed in Equation (3):

A(x,y) =R(x,y) - K(x,y) - LS(x,y) - C(x,y) - P(x,y) o)

Here, soil loss A is estimated at each cell (x,y), making
it possible to generate erosion risk maps at watershed,
regional, or national levels. This capability to spatialize
erosion predictions is one of the most important
advantages brought by GIS technology. Remote
sensing provides the observational backbone for
parameterizing several of these factors. Rainfall

erosivity (R) can be approximated using
satellite-derived precipitation products such as TRMM
or GPM; soil erodibility (K) can be mapped from global
soil property databases; slope length and steepness
(LS) are computed directly from digital elevation
models (DEMs); and vegetation cover factors (C) are
increasingly derived from indices such as NDVI or EVI
obtained from multispectral sensors like Landsat or
Sentinel-2. Conservation practices (P) can also be
estimated indirectly using land management layers
derived from classification of RS data. The main
strength of GIS- and RS-based erosion modeling lies in
its ability to provide consistent spatial coverage across
large and heterogeneous landscapes [32, 33]. This
allows not only identification of erosion hotspots but
also monitoring of temporal dynamics when
multi-temporal imagery is used. For instance, NDVI
time series from MODIS have been widely applied to
assess the seasonal variability of vegetation cover and
its role in reducing erosion rates. Moreover, the
increasing resolution of satellite platforms and the
proliferation of UAV surveys have enabled more
detailed assessments of rill and gully development,
which were previously beyond the reach of coarse
datasets. Nonetheless, several limitations persist. The
accuracy of DEMs strongly influences the reliability of
LS factor calculations, and coarse DEMs (e.g., 30 m
SRTM) may fail to capture micro-topographic features
critical for gully initiation. Land cover classifications
from RS imagery are also subject to errors, which
propagate into C- and P-factor estimates. Furthermore,
while RS data are temporally continuous, they do not
always coincide with individual rainfall events, limiting
their capacity to capture short-term erosion dynamics.
Finally, most GIS/RS-based studies still require
ground-based validation, which is often unavailable in
data-scarce regions. Applications of GIS- and
RS-based models are now widespread. In the Loess
Plateau of China, RUSLE-GIS models integrated with
MODIS NDVI data documented significant reductions
in soil erosion following the “Grain for Green”
reforestation program. In Mediterranean regions such
as Spain and ltaly, Sentinel-2 imagery has improved
the estimation of vegetation cover factors, providing
high-resolution erosion risk maps in olive-growing
landscapes. In Ethiopia’s Upper Blue Nile Basin,
DEM-based LS factors combined with rainfall erosivity
maps have been used to identify priority
sub-watersheds for soil conservation. In the United
States, LiDAR-based DEMs have provided
unprecedented detail for modeling gully initiation,
outperforming traditional SRTM or ASTER products.
Recent advances further extend the capabilities of
GIS/RS-based erosion modeling. One example is the
use of the Unit Stream Power-based
Erosion/Deposition (USPED) model, which estimates
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erosion and deposition patterns based on flow
accumulation and slope derived from DEMs. The
general formulation is shown in Equation (4):

E(x,y) =
R(x,¥) - K(x,¥) - C(x,y) - P(x,y) - (LS(x, y))™ -
sin (B (x, y)" (4)

where E represents net erosion or deposition at a given
cell, B is slope angle, and m and n are empirical
exponents controlling erosion—deposition dynamics.
This formulation provides a more spatially nuanced
view of sediment transport, moving beyond the uniform
soil loss assumption of RUSLE.

3.3. Machine Learning and Data-Driven Models

The rapid growth of Earth observation data, climate
records, and in-situ monitoring has created fertile
ground for the application of machine learning (ML) and
artificial intelligence (Al) in erosion modeling [34].
Unlike empirical and process-based frameworks, which
rely on predefined equations, ML models are
data-driven: they infer patterns directly from observed
relationships between environmental drivers and
measured erosion responses. This shift marks a
fundamental change in  methodology, from
deterministic formulations toward adaptive predictive
systems. Among the most widely used algorithms are
Random Forests (RF), Support Vector Machines
(SVM), Artificial Neural Networks (ANNs), and Deep
Learning (DL) architectures such as Convolutional
Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks [35]. RF and SVM have
proven effective for susceptibility mapping, where the
goal is to classify areas as erosion-prone or stable.
ANNSs are particularly suited to approximating highly
nonlinear relationships, while deep learning excels in
extracting spatial or temporal features from large,
complex datasets [34].

The general principle of ML-based erosion modeling
can be expressed in Equation (5):

Erisie = f (X1, Xz, e, X3) ()

where Erisk) represents erosion susceptibility or
predicted soil loss, and X, ... X, are predictor variables
such as slope, rainfall, soil texture, vegetation indices,
and land use. The function fis not specified a priori but
is learned iteratively by the ML algorithm from training
data [36].

For instance, in Random Forests, the predictive
function f is the aggregated output of an ensemble of
decision trees, formalized in Equation (6):

X)) =238, T (6)

where N is the number of trees, and Ti(X) is the
prediction of the j-th decision tree. This ensemble
structure allows RF to achieve high accuracy and
robustness against overfitting.

The advantages of ML approaches are well
documented. They are capable of capturing complex
nonlinear relationships between multiple interacting
variables, frequently achieving higher predictive
performance than empirical models. They scale
effectively with the size of the dataset, making them
ideal for integrating multi-source information from
DEMs, RS imagery, climate models, and sall
databases. Furthermore, algorithms like RF provide
variable importance measures, which can offer insight
into the relative influence of factors such as slope,
rainfall intensity, or vegetation cover. However, several
limitations temper these strengths. Many ML algorithms
are often criticized for their “black-box” nature,
providing predictions without transparent explanations
of underlying processes. Their performance is heavily
dependent on the availability and quality of training
datasets, which are scarce in many erosion-prone
regions. Transferability across regions is also a
challenge: models trained in one watershed may not
generalize well to others with different geomorphic or
climatic conditions. Deep learning models, although
powerful, demand large computational resources and
often require GPU-based infrastructure. Applications
illustrate both the promise and the challenges of ML. In
Iran’s Zagros Mountains, Random Forest models
achieved an AUC exceeding 0.9 for erosion
susceptibility mapping, clearly outperforming SVM
classifiers. Yet, when applied to neighboring
watersheds, predictive accuracy declined, highlighting
the transferability problem. In the Loess Plateau of
China, ANN-based models captured nonlinear
terrain—climate—land cover interactions more effectively
than statistical methods. CNNs applied to UAV
orthophotos in Australia achieved more than 95%
accuracy in detecting gully erosion features, while in
Spain, LSTM networks successfully predicted
event-driven sediment yield by combining rainfall time
series with land surface parameters. Recent
developments point toward a new generation of hybrid
and explainable ML models. Hybridization allows
physical understanding to complement predictive
power, while Explainable Al (XAl) techniques such as
SHAP (Shapley Additive Explanations) and LIME
provide transparency by attributing predictions to
specific input factors. Additionally, the use of transfer
learning—adapting pre-trained CNN models to
geospatial imagery—has reduced training data
requirements, while cloud-based platforms like Google
Earth Engine integrate ML tools with massive remote
sensing archives to enable near real-time global
erosion assessments.
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3.4. Hybrid and Integrated Frameworks

The complexity of soil erosion processes has
increasingly demonstrated the limitations of
single-model approaches. Empirical models such as
RUSLE offer simplicity and policy relevance but fail to
capture short-term variability, while process-based
models like WEPP provide mechanistic detail at the
expense of high data requirements [37]. Machine
learning approaches excel in predictive accuracy but
suffer from interpretability and transferability issues. As
a response, hybrid and integrated frameworks have
emerged as the frontier of erosion modeling, combining
the strengths of diverse paradigms to produce more
robust, scalable, and future-oriented tools [38]. One
common form of hybridization involves enhancing
empirical models with machine learning. For instance,
the cover-management (C) and support practice (P)
factors in RUSLE, which traditionally require empirical
calibration, can now be dynamically estimated from
remote sensing data through algorithms such as
Random Forests or ANNs. The resulting formulation,
shown in Equation (7), extends the standard
multiplicative form of RUSLE:

Anypria = R - K LS - C'(RS,ML) - P'(RS, ML) 7)

Here, C' and P' are no longer static parameters but
functions derived from remote sensing indices (e.g.,
NDVI, EVI) and machine learning predictions, thereby
reducing subjectivity and improving adaptability to
temporal variability.

Another approach integrates process-based
simulations with data-driven methods. Outputs from
WEPP [39], for example, can be used as training data
for deep learning models that then predict sediment
yield under future climate and land-use scenarios. This
creates a hybrid predictive structure where process
knowledge informs data-driven learning. The
combination can be expressed in Equation (8):

Yaypria = @ Ywepp + (1 — @) - fy (X) (8)

where YWEPP, is sediment yield simulated by the
WEPP model, fML)(X) is the machine learning
prediction based on input variables X, and a is a
weighting parameter optimized through calibration.
Such formulations allow erosion predictions to balance
mechanistic rigor with predictive flexibility.

Hybridization is not limited to pairwise model
combinations. Increasingly, multi-model ensembles
bring together empirical, process-based, and ML
predictions within a single decision-support system. By
averaging or probabilistically weighting outputs from
different models, ensemble approaches reduce
model-specific biases and provide uncertainty bounds,

which are crucial for policy applications. The
advantages of hybrid frameworks are evident. They
consistently achieve higher predictive accuracy than
stand-alone models and can be adapted to diverse
data conditions. For example, in the Loess Plateau of
China, a RUSLE-RF hybrid improved erosion risk
mapping by refining C factor estimation with
MODIS-derived  vegetation indices  [40]. In
Mediterranean watersheds, WEPP was coupled with
LSTM networks to better capture extreme-event
sediment yields, offering valuable insights into climate
change adaptation. In the United States, ensemble
models integrating RUSLE, WEPP, and Random
Forest reduced prediction errors by nearly one-third
compared to individual models [41]. Similarly, in
Australia, UAV-based CNN detections of gully erosion
were merged with RUSLE-based soil loss estimates,
producing high-resolution maps of both sheet and gully
erosion. Despite these strengths, hybrid approaches
present their own challenges. They are computationally
demanding, often requiring high-performance
infrastructure to run simulations and train ML models
concurrently. Calibration and validation become more

complex as multiple models must be tuned
simultaneously, and expertise from  multiple
disciplines—hydrology, geomorphology, computer
science—is necessary to ensure reliable

implementation. Furthermore, while hybrid models
improve transparency relative to black-box ML, they
still increase system complexity, which can limit
accessibility for policymakers and land managers.
Nevertheless, the ftrajectory of erosion science
suggests that hybridization is not a temporary trend but
a structural evolution. By embedding empirical clarity,
process-based rigor, and data-driven adaptability into a
single framework, hybrid models are well positioned to
address the dual needs of scientific precision and
policy relevance. They also provide a bridge toward
future-oriented paradigms such as GeoAl and digital
twins, where integration across models and datasets
becomes essential for real-time monitoring and
decision support. A comparative summary of major
modeling approaches, including  their  data
requirements, spatial scales, advantages, and
limitations, is presented in Table 1 to provide a
structured overview of the methodologies discussed.

3.5. Future-Oriented Perspectives

The future of water erosion modeling is increasingly
defined by the convergence of artificial intelligence,
Earth observation, big data platforms, and participatory
decision-making  tools.  Traditional = approaches
assumed stationarity in climate and land use, but
emerging perspectives acknowledge that both are
rapidly changing. As a result, models must be adaptive,
dynamic, and capable of integrating multiple data
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Table 1: Comparative Summary of Soil Erosion Modeling Approaches
Modeling Representative . Spatial / T
Approach Models Input Requirements Temporal Scale Advantages Limitations
Emoirical USLE, RUSLE, | Rainfall, soil erodibility, | Plot to watershed; | Simple, transparent, L'[‘;gsﬂ;‘élf‘s"e:gggssso”
P MUSLE slope, land cover annual easy to apply ’ detaiF;
WEPP, . . . Event to Mechanistic . s e
Process-based EUROSEM, sz:ghh-éfzglliuctl?g ré:ur:;allr,] continuous; understanding; Data"z:ﬁg’ﬁé:m'cu't
LISEM Y » topography plot/watershed scenario testing
GIS/RS-based |  RUSLE-GIS, DEMs, NDVI, RS Regional to Spatially explict; DEM and RS errors;
USPED imagery, rainfall maps national g 9 needs ground validation
datasets
Machine RF, SVM, ANN, CFQ;’;TS”Z:’;S‘Q :”F‘js Watershed to ';"ggfgzdn'l‘?:‘éz “Black-box” nature: low
Learning CNN, LSTM imatic varl ’ continental power, noniinear transferability
indices learning
. RUSLE-RF, . . Combines strengths Computationally
Hybrid / Multi-source inputs . )
WEPP-LSTM, o Multi-scale of models; demanding; complex
Integrated Ensemble Models (empirical + ML + RS) uncertainty reduction calibration
streams in near real time. These technological where erosion risk E.GeoAl) is modeled as a function

innovations are not only conceptual but increasingly
operational. Real-time monitoring systems based on
loT sensors and satellite data streams now enable
continuous tracking of rainfall, runoff, and soil loss
dynamics. Digital twin platforms integrate these data
with process-based and Al-driven models, allowing
engineers to simulate, visualize, and optimize erosion
control interventions before field implementation.
Likewise, GeoAl applications provide automated
detection of erosion hotspots from UAV or satellite
imagery, supporting rapid response and adaptive
management. Together, these technologies are
transforming erosion modeling from a purely analytical
tool into a practical decision-support system for
environmental engineering and sustainable watershed
management.

3.5.1. GeoAl
Intelligence

and Next-Generation Artificial

The integration of geospatial data with artificial
intelligence, commonly termed GeoAl, represents a
paradigm shift. Unlike conventional machine learning,
which often ignores spatial dependencies, GeoAl
explicitly incorporates spatial autocorrelation and
neighborhood effects. Deep learning architectures
such as Convolutional Neural Networks (CNNs) and
Graph Neural Networks (GNNs) can recognize
complex patterns in high-resolution satellite imagery or
UAV orthophotos, capturing features like rills and
gullies with unprecedented accuracy [42-44].

The general predictive structure of a GeoAl model
can be expressed as Equation (9):

EGeoAI (x' Y, t) =
foL(DEM (x,y),RS(x,y,t), Climate(t), Soil(x,y)) (9)

fDL, learned by deep learning, integrating topography,
time-varying remote sensing indices, climate inputs,
and soil properties.

GeoAl's promise lies in scalability and predictive
performance, yet it is data-intensive and computa-
tionally demanding. Its current applications remain
concentrated in research contexts, though pilot studies
have shown significant accuracy gains in gully erosion
detection and susceptibility mapping.

3.5.2. Digital Twins of Watersheds

The Digital Twin concept, already prominent in
engineering and urban systems, is now emerging in
hydrology and erosion research. A digital twin is a
continuously updated virtual replica of a watershed that
integrates process-based models with real-time data
streams from satellites, climate models, and loT
sensors. Unlike static models, digital twins simulate
ongoing system dynamics, enabling scenario testing
and early-warning applications [45].

This can be represented schematically in Equation
(10):

Twingaee(t) = fprocess(Climate, Soil, LandUse) +
fa1(RS, 10T, DEM, At) (10)

Here, the twin’'s state at time t is jointly defined by
process-based functions (fiprocess)) and continuously
updated Al-driven adjustments (fAl). Digital twins
enable “what-if” simulations that visualize the effects of
extreme rainfall events, conservation interventions, or
land-use changes. While the approach is still in its
infancy for erosion, pilot projects under European
Union Horizon programs have begun exploring soil
erosion digital twins for policy integration.
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3.5.3. Cloud Computing and Big Data Platforms

The explosion of Earth observation archives
requires computational environments that can handle
petabytes of data efficiently. Cloud platforms such as
Google Earth Engine (GEE), Microsoft Planetary
Computer, and ESA’s DIAS offer scalable solutions by
providing ready access to multi-decadal satellite
datasets. Researchers can now run RUSLE-GIS or ML
models at continental or even global scales without
downloading raw imagery [46].

The general structure of cloud-based modeling can
be formalized in Equation (11):

Ecloud(x' Y, t) = .
fmodel (RSarchive (x' Y, t)' DEM(X, y)' Cllmateproj (t))
(11)

where RSarchive, provides the remote sensing time
series, DEM contributes terrain structure, and
Climateproj) incorporates future rainfall projections.
Such formulations illustrate how cloud systems act as
integrative platforms for multi-source modeling. The
advantage of cloud computing lies in scalability and
reproducibility, though concerns remain about platform
dependency and the reproducibility of workflows if APls
or data access policies change.

3.5.4. Climate
Modeling

Change and Scenario-Based

Perhaps the most critical dimension of future
erosion modeling is its explicit integration with climate
change scenarios. Climate change alters rainfall
intensity, storm frequency, and vegetation cover, all of
which directly influence erosion rates [47]. Traditional
deterministic models are ill-suited for non-stationary
conditions. Scenario-based approaches now
incorporate downscaled climate projections (e.g.,
CMIP6 datasets) into erosion simulations. Instead of
producing single deterministic estimates, probabilistic
frameworks generate ranges of possible erosion
outcomes, allowing stakeholders to prepare for multiple
futures.

Formally, this can be represented as Equation (12):
P(E | Scenario;) = [ finoaer (X, Climate;) dX (12)

where P(E | Scenario) denotes the probability
distribution of erosion under a given climate scenario i.
This probabilistic framing is essential for risk
management and adaptation planning.

3.5.5. Participatory and Policy-Oriented Modeling

The final trend shaping future erosion modeling is
the move toward participatory decision support. Models
are increasingly being co-designed with farmers,
watershed managers, and policymakers to ensure

usability. Tools such as Participatory GIS (PGIS),
interactive dashboards, and even VR-based watershed
visualizations allow non-experts to explore the
implications of conservation practices in accessible
ways [48]. Digital twins, for example, can be integrated
with visualization interfaces that show how soil loss
changes under alternative land-use scenarios, making
them powerful communication tools. This shift is not
only technical but also epistemological: models are no
longer just for scientists, but for a broader community
of decision-makers.

CONCLUSION

The trajectory of water erosion modeling over the
past decades demonstrates both significant advances
and persistent challenges. Empirical approaches such
as RUSLE and MUSLE provided the first widely
applicable tools for assessing soil loss, and despite
their simplicity, they remain indispensable as baseline
frameworks. Process-based models like WEPP and
EUROSEM advanced the field by incorporating
hydrological and sediment transport processes,
thereby offering mechanistic insights into event-driven
erosion. However, their extensive data demands and
calibration requirements limit their use outside
well-monitored regions. The integration of GIS and
remote sensing has marked a turning point by enabling
spatially explicit risk assessments across large areas,
supported by increasingly accessible satellite imagery
and digital elevation models. These approaches,
however, remain constrained by input data quality and
the necessity of ground validation. Machine learning
and deep learning methods have introduced
unprecedented predictive power, capturing complex
nonlinear relationships and leveraging big data. Yet,
their limited interpretability and transferability across
regions highlight the need for frameworks that combine
predictive accuracy with explanatory depth. Hybrid and
integrated models represent the current frontier,
synthesizing the clarity of empirical approaches, the
rigor of process-based models, and the adaptability of
Al. Case studies across diverse environments
consistently demonstrate that hybrid systems
outperform stand-alone methods in terms of accuracy
and robustness, though they also require advanced
expertise and computational resources. Looking
forward, future-oriented perspectives such as GeoAl,
digital twins, cloud-based platforms, and participatory
decision-support systems hold transformative potential.
These innovations move erosion modeling beyond
static assessment toward dynamic, probabilistic, and
stakeholder-inclusive frameworks capable of
addressing the uncertainties of climate change and
land-use transformation. From an environmental
engineering perspective, the outcomes of erosion
modeling directly inform the design and optimization of
soil and water conservation structures—such as
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terraces, check dams, vegetative buffer strips, and
contour bunds—by identifying erosion hotspots and
sediment transport pathways. Moreover, model-based
assessments support watershed engineering and land
management planning by prioritizing critical sub-basins
for intervention, estimating sediment yield reduction
under alternative conservation scenarios, and
evaluating the cost-effectiveness of mitigation
strategies. Integrating these insights into policy tools
enables adaptive management practices that enhance
soil resilience, water quality, and infrastructure
stability. Strengthening the connection between
erosion modeling, climate change adaptation, and
sustainable land-use planning is essential to achieving
long-term soil resilience. By integrating erosion risk
predictions with spatial planning frameworks and
adaptation policies, model-based insights can guide
decisions on reforestation, crop rotation, and
conservation structure placement under future climate
scenarios. This cross-disciplinary linkage positions
erosion modeling as a key instrument in advancing
sustainability goals, supporting both environmental
protection and socio-economic stability in vulnerable
regions.
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