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Abstract: Soil erosion by water remains one of the most pressing forms of land degradation, undermining agricultural 
productivity, ecosystem services, and global food security. Over the past decades, diverse modeling approaches have 
been developed to quantify and predict soil erosion, ranging from classical empirical models to advanced machine 
learning and hybrid frameworks. This review synthesizes the evolution of erosion modeling, highlighting both the 
historical foundations and emerging directions. Empirical models such as USLE and RUSLE provided the first 
standardized and widely adopted methods, while process-based models like WEPP and EUROSEM advanced 
mechanistic understanding but faced limitations due to extensive data demands. The integration of Geographic 
Information Systems (GIS) and Remote Sensing (RS) transformed erosion modeling by enabling spatially explicit risk 
assessments at watershed and regional scales. More recently, machine learning algorithms—including Random Forests, 
Support Vector Machines, and deep learning architectures—have demonstrated superior predictive power, although 
challenges of interpretability, transferability, and data dependency remain unresolved. Hybrid and integrated models 
now represent the state-of-the-art frontier, combining empirical transparency, process-based rigor, and AI-driven 
adaptability. Future-oriented perspectives, including GeoAI, digital twins, cloud-based platforms, and participatory 
modeling approaches, offer transformative potential. These innovations are particularly critical under non-stationary 
conditions driven by climate change and land-use transformations, which demand dynamic, probabilistic, and 
stakeholder-inclusive frameworks. The review concludes that no single paradigm is sufficient to capture the complexity 
of water erosion. The way forward lies in integrated, multi-scale, and uncertainty-aware modeling systems that bridge 
scientific precision with policy relevance, supporting sustainable land management and climate adaptation in the coming 
decades. 
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INTRODUCTION 

Soil erosion by water is one of the most widespread 
forms of land degradation, threatening agricultural 
productivity, water quality, and ecosystem services 
across the globe. The removal of fertile topsoil not only 
reduces crop yields but also alters hydrological cycles, 
increases sedimentation in rivers and reservoirs, and 
accelerates land degradation processes that 
undermine sustainable development. According to 
recent estimates by the Food and Agriculture 
Organization (FAO) and the Intergovernmental Panel 
on Climate Change (IPCC), more than 24 billion tons of 
fertile soil are lost annually worldwide, with water 
erosion accounting for the majority of this degradation 
[1-3]. This phenomenon is particularly critical in regions 
experiencing intense rainfall events, steep topography, 
and fragile soils, but it is also increasingly relevant in 
temperate landscapes where land-use intensification 
and climate change are altering erosion dynamics [4]. 
In Mediterranean regions, for example, the combination 
of seasonal rainfall variability, olive monocultures, and 
overgrazing has produced severe erosion hotspots. In 
tropical and subtropical areas, deforestation and 
unsustainable agricultural practices exacerbate erosion 
rates, while in arid and semi-arid regions, water erosion 
interacts with desertification processes [5-8], creating  
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compounded challenges for land managers. Water 
erosion is thus not only a local agronomic concern but 
also a global environmental issue. Its impacts extend 
into socio-economic domains, including food security, 
rural livelihoods, and infrastructure stability [9]. 
Reservoir sedimentation, for instance, reduces the 
lifespan of hydropower dams and irrigation systems, 
creating long-term economic costs. Additionally, soil 
erosion releases stored carbon into the atmosphere, 
linking erosion processes with broader debates on 
climate change mitigation and adaptation [10]. The 
urgency of addressing water erosion is therefore clear, 
and modeling has become a central tool in 
understanding, predicting, and managing its impacts 
[11, 12]. The modeling of water erosion has a long 
history, beginning with empirical formulations derived 
from plot-scale experiments in the mid-twentieth 
century. The Universal Soil Loss Equation (USLE), 
later revised as RUSLE, provided the first standardized 
framework for predicting average annual soil loss 
based on rainfall erosivity, soil erodibility, topography, 
cover-management, and conservation practices. These 
models, though empirical in nature, achieved 
widespread adoption because of their simplicity, 
transparency, and policy relevance [13]. The 1980s 
and 1990s saw the rise of process-based models, such 
as the Water Erosion Prediction Project (WEPP) and 
the European Soil Erosion Model (EUROSEM). These 
models aimed to simulate the physical processes of 
rainfall impact, infiltration, surface runoff, detachment, 
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and sediment transport, offering a more mechanistic 
understanding of erosion dynamics. While powerful, 
these models also revealed the challenges of high data 
requirements and calibration difficulties, particularly in 
data-scarce regions of the Global South. In parallel, the 
integration of Geographic Information Systems (GIS) 
and Remote Sensing (RS) expanded the spatial scope 
of erosion modeling [14]. By transforming model 
parameters into geospatial layers, GIS-based 
approaches enabled the mapping of erosion risks at 
watershed, regional, and national scales. Remote 
sensing technologies, ranging from Landsat to Sentinel 
and UAV platforms, provided unprecedented access to 
vegetation indices, land-use dynamics, and digital 
elevation models, which significantly enriched the 
parameterization of erosion models [15]. The 
twenty-first century has witnessed a surge in data 
availability, computational capacity, and 
methodological innovation. Machine learning and 
artificial intelligence have emerged as transformative 
tools, capable of uncovering nonlinear relationships 
between environmental drivers and erosion processes 
[16-18]. Random Forests, Support Vector Machines, 
and deep learning architectures have achieved 
remarkable predictive performance, particularly when 
combined with remote sensing datasets. Yet, 
persistent challenges remain [19, 20]. Data scarcity 
continues to limit model applicability in many parts of 
the world. High-resolution rainfall records, soil hydraulic 
properties, and long-term field measurements are often 
unavailable, constraining the calibration and validation 
of both process-based and ML-driven models [21]. 
Uncertainty quantification is another pressing issue: 
few models rigorously propagate uncertainties from 
input datasets through to final predictions, leading to 
risks in policy applications. Transferability across 
regions is also limited, as models calibrated in one 
watershed often fail when applied to others with 
different climatic or geomorphic conditions. 
Computational complexity further complicates the use 
of advanced models, particularly in developing regions 
where resources are scarce. Moreover, many erosion 
models remain designed primarily for scientists, with 
interfaces and outputs poorly aligned with the needs of 
policymakers, land managers, and local communities. 
Bridging this gap requires not only technical 
improvements but also institutional and participatory 
innovations. Given these limitations, the field is moving 
toward a new paradigm that emphasizes integration, 
adaptability, and inclusivity. Future-oriented 
perspectives include the development of GeoAI, which 
merges geospatial data with artificial intelligence to 
provide real-time erosion predictions; digital twins of 
watersheds, which create continuously updated virtual 
replicas capable of scenario testing; and cloud-based 
platforms, which democratize access to big data and 

advanced modeling tools. Equally important is the 
integration of climate change scenarios into erosion 
modeling [22-24]. Non-stationary conditions demand 
probabilistic frameworks that can represent ranges of 
possible futures, rather than single deterministic 
predictions. Participatory approaches, such as 
participatory GIS and interactive decision-support 
systems, are also gaining momentum, ensuring that 
erosion models are not only scientifically rigorous but 
also socially relevant. This evolution suggests that the 
future of water erosion modeling will not be defined by 
the dominance of any single paradigm but by the 
integration of multiple approaches—empirical, 
process-based, GIS/RS, machine learning, and hybrid 
systems—within flexible, multi-scale, and 
uncertainty-aware frameworks [25, 26]. Against this 
backdrop, the aim of this review is to provide a 
comprehensive synthesis of the current state of water 
erosion modeling, critically evaluating the strengths 
and limitations of different approaches, and identifying 
emerging opportunities and challenges. By 
systematically examining empirical, process-based, 
GIS/RS, machine learning, hybrid, and future-oriented 
frameworks, this article seeks to clarify how erosion 
modeling can evolve into a more robust, adaptive, and 
policy-relevant tool. Ultimately, the paper aims to 
highlight pathways toward integrated and participatory 
modeling systems capable of supporting sustainable 
land management and climate adaptation strategies in 
the decades to come. While several reviews have 
addressed erosion modeling from specific angles, few 
have provided a unified cross-paradigm synthesis 
linking classical models with AI-driven and GeoAI 
frameworks. The novelty of this review lies in bridging 
these traditionally separate domains to propose an 
integrative perspective that connects scientific 
modeling with real-world engineering and policy 
applications. 

MATERIALS AND METHODS 

This study adopts a systematic review and 
conceptual framework approach to explore the future of 
water erosion modeling, its challenges, and emerging 
methodologies. The research design consisted of the 
following steps: 

1 Literature Collection 

• A comprehensive search of peer-reviewed 
articles, reports, and book chapters 
published between 2000 and 2025 was 
conducted using databases such as Web of 
Science, Scopus, and Google Scholar. 

• Keywords included combinations of: soil 
erosion, water erosion modeling, future 
perspectives, climate change impacts, 
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remote sensing, machine learning, 
process-based models, RUSLE, WEPP, 
GeoAI. 

2 Inclusion and Exclusion Criteria 

• Studies were included if they addressed (i) 
modeling of soil erosion caused by water, 
(ii) advancements in simulation approaches, 
or (iii) challenges under future climate and 
land-use scenarios. 

• Papers focused exclusively on wind erosion 
or non-hydrological processes were 
excluded. 

3 Thematic Categorization 

• Selected studies were categorized into 
thematic areas: 

a. Traditional and Process-Based Models 
(e.g., RUSLE, WEPP, EUROSEM) 
b. GIS and Remote Sensing-Based 
Approaches 
c. Machine Learning and Data-Driven Models 
d. Hybrid and Integrated Models (coupling 
physical and AI-based approaches) 
e. Future-Oriented Perspectives (climate 
change, big data, policy integration). 

4 Comparative Analysis 

• Each category was analyzed with respect to 
input data requirements, spatial and 
temporal resolution, computational 
complexity, scalability, and capacity for 
integration with new technologies. 

• Special attention was given to recent 
innovations, including GeoAI, cloud 
computing, digital twins, and Earth 
observation datasets. 

5 Expert Consultation 

• To validate the framework, expert opinions 
were synthesized from existing review 
papers and technical reports published by 
organizations such as the FAO, European 
Commission, and USDA. 

6 Framework for Future Directions 

• Based on the synthesis, a conceptual 
framework was developed highlighting 
major challenges (data availability, model 
transferability, uncertainty quantification) 
and innovative pathways (AI integration, 

multi-scale modeling, participatory 
approaches). 

RESULTS  

3.1. Conventional and Process-Based Models 

Empirical and process-based models form the 
historical backbone of water erosion research, and 
despite the emergence of more advanced approaches, 
they continue to play a fundamental role. Among them, 
the Universal Soil Loss Equation (USLE) and its 
subsequent revision (RUSLE) remain the most widely 
implemented due to their simplicity and adaptability 
across diverse geographic contexts. The general 
formulation of RUSLE is expressed in Equation (1) 
[27-30]: 

! = ! ⋅ ! ⋅ !" ⋅ ! ⋅ !       (1) 

where A represents the mean annual soil loss, and the 
multiplicative factors account for rainfall erosivity (R), 
soil erodibility (K), slope length and steepness (LS), 
cover-management (C), and conservation practices (P). 
RUSLE has become popular largely because of its 
ease of application and transparency, making it a 
preferred tool in policy-oriented studies and land 
management planning. However, it remains limited to 
long-term average soil loss estimates and does not 
capture short-term variability, sediment deposition, or 
gully formation. 

Building upon RUSLE, the Modified Universal Soil 
Loss Equation (MUSLE) introduced a refinement by 
replacing the rainfall factor with runoff volume and peak 
discharge, thereby enabling predictions at the event 
scale. This adjustment, shown in Equation (2): 

!"# = 11.8 ⋅ (! ⋅ !!)!.!" ⋅ ! ⋅ ! ⋅ ! ⋅ !"     (2) 

demonstrates the evolution from purely empirical 
relationships toward a closer connection with 
hydrological processes. MUSLE has been especially 
useful in linking erosion modeling with watershed 
hydrology, yet it still inherits some of the constraints of 
empirical approaches, particularly the need for regional 
calibration of input parameters. In parallel, 
process-based models such as the Water Erosion 
Prediction Project (WEPP), the European Soil Erosion 
Model (EUROSEM), and the Limburg Soil Erosion 
Model (LISEM) have sought to simulate erosion by 
explicitly representing the physical processes of rainfall 
impact, infiltration, surface runoff, detachment, 
transport, and deposition. Unlike the empirical 
formulations of RUSLE or MUSLE, these models 
operate at finer temporal resolutions and can provide 
event-based predictions. For example, WEPP can 
simulate continuous hydrological and erosion 
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processes, producing not only soil loss estimates but 
also runoff volumes, sediment size distributions, and 
spatial patterns of erosion across a watershed. 
EUROSEM and LISEM, in contrast, are typically 
applied to individual storm events and emphasize the 
spatial distribution of erosion within catchments, 
drawing heavily on DEMs and land use data. The 
advantages of process-based models are clear: they 
provide mechanistic insights, allow scenario testing for 
different land management practices, and are more 
responsive to climate and land-use changes. 
Nevertheless, these strengths come at the cost of 
demanding high-resolution input data and significant 
calibration effort, often making them impractical for 
regions with limited monitoring infrastructure. Empirical 
models, by contrast, while less precise in process 
representation, remain accessible and cost-effective 
tools that continue to dominate large-scale erosion risk 
assessments. Thus, conventional and process-based 
models should not be regarded as competing 
paradigms but rather as complementary tools. 
Empirical models such as RUSLE are effective in 
producing rapid, large-area erosion estimates suitable 
for policy and land management, while process-based 
models like WEPP or EUROSEM are indispensable for 
research that requires detailed understanding of 
event-driven erosion dynamics. The continued 
relevance of these models lies not only in their 
historical legacy but also in their ability to serve as 
benchmarks and foundations for hybrid and 
next-generation modeling frameworks. 

3.2. GIS- and Remote Sensing-Based Approaches  

The integration of Geographic Information Systems 
(GIS) and Remote Sensing (RS) has fundamentally 
reshaped the way soil erosion is modeled and mapped. 
Unlike purely empirical formulations, which were 
initially developed at plot scale, GIS- and RS-based 
approaches allow the extrapolation of erosion 
processes across larger spatial domains by 
transforming model factors into geospatial layers [31]. 
A typical example is the spatial implementation of the 
RUSLE equation, where each factor is computed for 
individual grid cells rather than for an entire plot. The 
gridded formulation is expressed in Equation (3): 

!(!, !) = !(!, !) ⋅ !(!, !) ⋅ !"(!, !) ⋅ !(!, !) ⋅ !(!, !)
          (3) 

Here, soil loss A is estimated at each cell (x,y), making 
it possible to generate erosion risk maps at watershed, 
regional, or national levels. This capability to spatialize 
erosion predictions is one of the most important 
advantages brought by GIS technology. Remote 
sensing provides the observational backbone for 
parameterizing several of these factors. Rainfall 

erosivity (R) can be approximated using 
satellite-derived precipitation products such as TRMM 
or GPM; soil erodibility (K) can be mapped from global 
soil property databases; slope length and steepness 
(LS) are computed directly from digital elevation 
models (DEMs); and vegetation cover factors (C) are 
increasingly derived from indices such as NDVI or EVI 
obtained from multispectral sensors like Landsat or 
Sentinel-2. Conservation practices (P) can also be 
estimated indirectly using land management layers 
derived from classification of RS data. The main 
strength of GIS- and RS-based erosion modeling lies in 
its ability to provide consistent spatial coverage across 
large and heterogeneous landscapes [32, 33]. This 
allows not only identification of erosion hotspots but 
also monitoring of temporal dynamics when 
multi-temporal imagery is used. For instance, NDVI 
time series from MODIS have been widely applied to 
assess the seasonal variability of vegetation cover and 
its role in reducing erosion rates. Moreover, the 
increasing resolution of satellite platforms and the 
proliferation of UAV surveys have enabled more 
detailed assessments of rill and gully development, 
which were previously beyond the reach of coarse 
datasets. Nonetheless, several limitations persist. The 
accuracy of DEMs strongly influences the reliability of 
LS factor calculations, and coarse DEMs (e.g., 30 m 
SRTM) may fail to capture micro-topographic features 
critical for gully initiation. Land cover classifications 
from RS imagery are also subject to errors, which 
propagate into C- and P-factor estimates. Furthermore, 
while RS data are temporally continuous, they do not 
always coincide with individual rainfall events, limiting 
their capacity to capture short-term erosion dynamics. 
Finally, most GIS/RS-based studies still require 
ground-based validation, which is often unavailable in 
data-scarce regions. Applications of GIS- and 
RS-based models are now widespread. In the Loess 
Plateau of China, RUSLE-GIS models integrated with 
MODIS NDVI data documented significant reductions 
in soil erosion following the “Grain for Green” 
reforestation program. In Mediterranean regions such 
as Spain and Italy, Sentinel-2 imagery has improved 
the estimation of vegetation cover factors, providing 
high-resolution erosion risk maps in olive-growing 
landscapes. In Ethiopia’s Upper Blue Nile Basin, 
DEM-based LS factors combined with rainfall erosivity 
maps have been used to identify priority 
sub-watersheds for soil conservation. In the United 
States, LiDAR-based DEMs have provided 
unprecedented detail for modeling gully initiation, 
outperforming traditional SRTM or ASTER products. 
Recent advances further extend the capabilities of 
GIS/RS-based erosion modeling. One example is the 
use of the Unit Stream Power-based 
Erosion/Deposition (USPED) model, which estimates 
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erosion and deposition patterns based on flow 
accumulation and slope derived from DEMs. The 
general formulation is shown in Equation (4): 

!(!, !) =
!(!, !) ⋅ !(!, !) ⋅ !(!, !) ⋅ !(!, !) ⋅ (!"(!, !))! ⋅
sin  (!(!, !))!         (4) 

where E represents net erosion or deposition at a given 
cell, β is slope angle, and m and n are empirical 
exponents controlling erosion–deposition dynamics. 
This formulation provides a more spatially nuanced 
view of sediment transport, moving beyond the uniform 
soil loss assumption of RUSLE. 

3.3. Machine Learning and Data-Driven Models  

The rapid growth of Earth observation data, climate 
records, and in-situ monitoring has created fertile 
ground for the application of machine learning (ML) and 
artificial intelligence (AI) in erosion modeling [34]. 
Unlike empirical and process-based frameworks, which 
rely on predefined equations, ML models are 
data-driven: they infer patterns directly from observed 
relationships between environmental drivers and 
measured erosion responses. This shift marks a 
fundamental change in methodology, from 
deterministic formulations toward adaptive predictive 
systems. Among the most widely used algorithms are 
Random Forests (RF), Support Vector Machines 
(SVM), Artificial Neural Networks (ANNs), and Deep 
Learning (DL) architectures such as Convolutional 
Neural Networks (CNNs) and Long Short-Term 
Memory (LSTM) networks [35]. RF and SVM have 
proven effective for susceptibility mapping, where the 
goal is to classify areas as erosion-prone or stable. 
ANNs are particularly suited to approximating highly 
nonlinear relationships, while deep learning excels in 
extracting spatial or temporal features from large, 
complex datasets [34]. 

The general principle of ML-based erosion modeling 
can be expressed in Equation (5): 

!!"#$ = !(!!,!!,… ,!!)       (5) 

where E₍risk₎ represents erosion susceptibility or 
predicted soil loss, and X₁ … Xn are predictor variables 
such as slope, rainfall, soil texture, vegetation indices, 
and land use. The function f is not specified a priori but 
is learned iteratively by the ML algorithm from training 
data [36]. 

For instance, in Random Forests, the predictive 
function f is the aggregated output of an ensemble of 
decision trees, formalized in Equation (6): 

!(!) = !
!

!
!!! !!(!)       (6) 

where N is the number of trees, and Tᵢ(X) is the 
prediction of the i-th decision tree. This ensemble 
structure allows RF to achieve high accuracy and 
robustness against overfitting. 

The advantages of ML approaches are well 
documented. They are capable of capturing complex 
nonlinear relationships between multiple interacting 
variables, frequently achieving higher predictive 
performance than empirical models. They scale 
effectively with the size of the dataset, making them 
ideal for integrating multi-source information from 
DEMs, RS imagery, climate models, and soil 
databases. Furthermore, algorithms like RF provide 
variable importance measures, which can offer insight 
into the relative influence of factors such as slope, 
rainfall intensity, or vegetation cover. However, several 
limitations temper these strengths. Many ML algorithms 
are often criticized for their “black-box” nature, 
providing predictions without transparent explanations 
of underlying processes. Their performance is heavily 
dependent on the availability and quality of training 
datasets, which are scarce in many erosion-prone 
regions. Transferability across regions is also a 
challenge: models trained in one watershed may not 
generalize well to others with different geomorphic or 
climatic conditions. Deep learning models, although 
powerful, demand large computational resources and 
often require GPU-based infrastructure. Applications 
illustrate both the promise and the challenges of ML. In 
Iran’s Zagros Mountains, Random Forest models 
achieved an AUC exceeding 0.9 for erosion 
susceptibility mapping, clearly outperforming SVM 
classifiers. Yet, when applied to neighboring 
watersheds, predictive accuracy declined, highlighting 
the transferability problem. In the Loess Plateau of 
China, ANN-based models captured nonlinear 
terrain–climate–land cover interactions more effectively 
than statistical methods. CNNs applied to UAV 
orthophotos in Australia achieved more than 95% 
accuracy in detecting gully erosion features, while in 
Spain, LSTM networks successfully predicted 
event-driven sediment yield by combining rainfall time 
series with land surface parameters. Recent 
developments point toward a new generation of hybrid 
and explainable ML models. Hybridization allows 
physical understanding to complement predictive 
power, while Explainable AI (XAI) techniques such as 
SHAP (Shapley Additive Explanations) and LIME 
provide transparency by attributing predictions to 
specific input factors. Additionally, the use of transfer 
learning—adapting pre-trained CNN models to 
geospatial imagery—has reduced training data 
requirements, while cloud-based platforms like Google 
Earth Engine integrate ML tools with massive remote 
sensing archives to enable near real-time global 
erosion assessments. 
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3.4. Hybrid and Integrated Frameworks 

The complexity of soil erosion processes has 
increasingly demonstrated the limitations of 
single-model approaches. Empirical models such as 
RUSLE offer simplicity and policy relevance but fail to 
capture short-term variability, while process-based 
models like WEPP provide mechanistic detail at the 
expense of high data requirements [37]. Machine 
learning approaches excel in predictive accuracy but 
suffer from interpretability and transferability issues. As 
a response, hybrid and integrated frameworks have 
emerged as the frontier of erosion modeling, combining 
the strengths of diverse paradigms to produce more 
robust, scalable, and future-oriented tools [38]. One 
common form of hybridization involves enhancing 
empirical models with machine learning. For instance, 
the cover-management (C) and support practice (P) 
factors in RUSLE, which traditionally require empirical 
calibration, can now be dynamically estimated from 
remote sensing data through algorithms such as 
Random Forests or ANNs. The resulting formulation, 
shown in Equation (7), extends the standard 
multiplicative form of RUSLE: 

!!!"#$% = ! ⋅ ! ⋅ !" ⋅ !!(!",!") ⋅ !!(!",!")    (7) 

Here, C′ and P′ are no longer static parameters but 
functions derived from remote sensing indices (e.g., 
NDVI, EVI) and machine learning predictions, thereby 
reducing subjectivity and improving adaptability to 
temporal variability. 

Another approach integrates process-based 
simulations with data-driven methods. Outputs from 
WEPP [39], for example, can be used as training data 
for deep learning models that then predict sediment 
yield under future climate and land-use scenarios. This 
creates a hybrid predictive structure where process 
knowledge informs data-driven learning. The 
combination can be expressed in Equation (8): 

!!!"#$% = ! ⋅ !!"## + (1 − !) ⋅ !!"(!)     (8) 

where Y₍WEPP₎ is sediment yield simulated by the 
WEPP model, f₍ML₎(X) is the machine learning 
prediction based on input variables X, and α is a 
weighting parameter optimized through calibration. 
Such formulations allow erosion predictions to balance 
mechanistic rigor with predictive flexibility. 

Hybridization is not limited to pairwise model 
combinations. Increasingly, multi-model ensembles 
bring together empirical, process-based, and ML 
predictions within a single decision-support system. By 
averaging or probabilistically weighting outputs from 
different models, ensemble approaches reduce 
model-specific biases and provide uncertainty bounds, 

which are crucial for policy applications. The 
advantages of hybrid frameworks are evident. They 
consistently achieve higher predictive accuracy than 
stand-alone models and can be adapted to diverse 
data conditions. For example, in the Loess Plateau of 
China, a RUSLE-RF hybrid improved erosion risk 
mapping by refining C factor estimation with 
MODIS-derived vegetation indices [40]. In 
Mediterranean watersheds, WEPP was coupled with 
LSTM networks to better capture extreme-event 
sediment yields, offering valuable insights into climate 
change adaptation. In the United States, ensemble 
models integrating RUSLE, WEPP, and Random 
Forest reduced prediction errors by nearly one-third 
compared to individual models [41]. Similarly, in 
Australia, UAV-based CNN detections of gully erosion 
were merged with RUSLE-based soil loss estimates, 
producing high-resolution maps of both sheet and gully 
erosion. Despite these strengths, hybrid approaches 
present their own challenges. They are computationally 
demanding, often requiring high-performance 
infrastructure to run simulations and train ML models 
concurrently. Calibration and validation become more 
complex as multiple models must be tuned 
simultaneously, and expertise from multiple 
disciplines—hydrology, geomorphology, computer 
science—is necessary to ensure reliable 
implementation. Furthermore, while hybrid models 
improve transparency relative to black-box ML, they 
still increase system complexity, which can limit 
accessibility for policymakers and land managers. 
Nevertheless, the trajectory of erosion science 
suggests that hybridization is not a temporary trend but 
a structural evolution. By embedding empirical clarity, 
process-based rigor, and data-driven adaptability into a 
single framework, hybrid models are well positioned to 
address the dual needs of scientific precision and 
policy relevance. They also provide a bridge toward 
future-oriented paradigms such as GeoAI and digital 
twins, where integration across models and datasets 
becomes essential for real-time monitoring and 
decision support. A comparative summary of major 
modeling approaches, including their data 
requirements, spatial scales, advantages, and 
limitations, is presented in Table 1 to provide a 
structured overview of the methodologies discussed. 

3.5. Future-Oriented Perspectives 

The future of water erosion modeling is increasingly 
defined by the convergence of artificial intelligence, 
Earth observation, big data platforms, and participatory 
decision-making tools. Traditional approaches 
assumed stationarity in climate and land use, but 
emerging perspectives acknowledge that both are 
rapidly changing. As a result, models must be adaptive, 
dynamic, and capable of integrating multiple data 
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streams in near real time. These technological 
innovations are not only conceptual but increasingly 
operational. Real-time monitoring systems based on 
IoT sensors and satellite data streams now enable 
continuous tracking of rainfall, runoff, and soil loss 
dynamics. Digital twin platforms integrate these data 
with process-based and AI-driven models, allowing 
engineers to simulate, visualize, and optimize erosion 
control interventions before field implementation. 
Likewise, GeoAI applications provide automated 
detection of erosion hotspots from UAV or satellite 
imagery, supporting rapid response and adaptive 
management. Together, these technologies are 
transforming erosion modeling from a purely analytical 
tool into a practical decision-support system for 
environmental engineering and sustainable watershed 
management. 

3.5.1. GeoAI and Next-Generation Artificial 
Intelligence 

The integration of geospatial data with artificial 
intelligence, commonly termed GeoAI, represents a 
paradigm shift. Unlike conventional machine learning, 
which often ignores spatial dependencies, GeoAI 
explicitly incorporates spatial autocorrelation and 
neighborhood effects. Deep learning architectures 
such as Convolutional Neural Networks (CNNs) and 
Graph Neural Networks (GNNs) can recognize 
complex patterns in high-resolution satellite imagery or 
UAV orthophotos, capturing features like rills and 
gullies with unprecedented accuracy [42-44]. 

The general predictive structure of a GeoAI model 
can be expressed as Equation (9): 

!!"#$%(!, !, !) =
!!"(!"#(!, !),!"(!, !, !),!"#$%&'(!), !"#$(!, !))    (9) 

where erosion risk E₍GeoAI₎ is modeled as a function 
f₍DL₎ learned by deep learning, integrating topography, 
time-varying remote sensing indices, climate inputs, 
and soil properties. 

GeoAI’s promise lies in scalability and predictive 
performance, yet it is data-intensive and computa- 
tionally demanding. Its current applications remain 
concentrated in research contexts, though pilot studies 
have shown significant accuracy gains in gully erosion 
detection and susceptibility mapping. 

3.5.2. Digital Twins of Watersheds 

The Digital Twin concept, already prominent in 
engineering and urban systems, is now emerging in 
hydrology and erosion research. A digital twin is a 
continuously updated virtual replica of a watershed that 
integrates process-based models with real-time data 
streams from satellites, climate models, and IoT 
sensors. Unlike static models, digital twins simulate 
ongoing system dynamics, enabling scenario testing 
and early-warning applications [45]. 

This can be represented schematically in Equation 
(10): 

!"#!!"#"$(!) = !!"#$%&&(!"#$%&', !"#$, !"#$%&') +
!!"(!", !"#,!"#,Δ!)     (10) 

Here, the twin’s state at time t is jointly defined by 
process-based functions (f₍process₎) and continuously 
updated AI-driven adjustments (f₍AI₎). Digital twins 
enable “what-if” simulations that visualize the effects of 
extreme rainfall events, conservation interventions, or 
land-use changes. While the approach is still in its 
infancy for erosion, pilot projects under European 
Union Horizon programs have begun exploring soil 
erosion digital twins for policy integration. 

Table 1: Comparative Summary of Soil Erosion Modeling Approaches 

Modeling 
Approach 

Representative 
Models Input Requirements Spatial / 

Temporal Scale Advantages Limitations 

Empirical USLE, RUSLE, 
MUSLE 

Rainfall, soil erodibility, 
slope, land cover 

Plot to watershed; 
annual 

Simple, transparent, 
easy to apply 

Limited to average soil 
loss; lacks process 

detail 

Process-based 
WEPP, 

EUROSEM, 
LISEM 

High-resolution rainfall, 
soil hydraulic, topography 

Event to 
continuous; 

plot/watershed 

Mechanistic 
understanding; 
scenario testing 

Data-intensive; difficult 
calibration 

GIS/RS-based RUSLE-GIS, 
USPED 

DEMs, NDVI, RS 
imagery, rainfall maps 

Regional to 
national 

Spatially explicit; 
integrates large 

datasets 

DEM and RS errors; 
needs ground validation 

Machine 
Learning 

RF, SVM, ANN, 
CNN, LSTM 

Environmental and 
climatic variables, RS 

indices 

Watershed to 
continental 

High predictive 
power; nonlinear 

learning 

“Black-box” nature; low 
transferability 

Hybrid / 
Integrated 

RUSLE–RF, 
WEPP–LSTM, 

Ensemble Models 

Multi-source inputs 
(empirical + ML + RS) Multi-scale 

Combines strengths 
of models; 

uncertainty reduction 

Computationally 
demanding; complex 

calibration 
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3.5.3. Cloud Computing and Big Data Platforms 

The explosion of Earth observation archives 
requires computational environments that can handle 
petabytes of data efficiently. Cloud platforms such as 
Google Earth Engine (GEE), Microsoft Planetary 
Computer, and ESA’s DIAS offer scalable solutions by 
providing ready access to multi-decadal satellite 
datasets. Researchers can now run RUSLE-GIS or ML 
models at continental or even global scales without 
downloading raw imagery [46]. 

The general structure of cloud-based modeling can 
be formalized in Equation (11): 

!!"#$%(!, !, !) =
!!"#$%(!!!"#!!"#(!, !, !),!"#(!, !),!"#$%&!!"#$(!))
        (11) 

where RS₍archive₎ provides the remote sensing time 
series, DEM contributes terrain structure, and 
Climate₍proj₎ incorporates future rainfall projections. 
Such formulations illustrate how cloud systems act as 
integrative platforms for multi-source modeling. The 
advantage of cloud computing lies in scalability and 
reproducibility, though concerns remain about platform 
dependency and the reproducibility of workflows if APIs 
or data access policies change. 

3.5.4. Climate Change and Scenario-Based 
Modeling 

Perhaps the most critical dimension of future 
erosion modeling is its explicit integration with climate 
change scenarios. Climate change alters rainfall 
intensity, storm frequency, and vegetation cover, all of 
which directly influence erosion rates [47]. Traditional 
deterministic models are ill-suited for non-stationary 
conditions. Scenario-based approaches now 
incorporate downscaled climate projections (e.g., 
CMIP6 datasets) into erosion simulations. Instead of 
producing single deterministic estimates, probabilistic 
frameworks generate ranges of possible erosion 
outcomes, allowing stakeholders to prepare for multiple 
futures. 

Formally, this can be represented as Equation (12): 

!(! ∣ !"#$%&'!!) = ∫ !!"#$%(!,!"#$%&!!)  !"  (12) 

where P(E | Scenarioᵢ) denotes the probability 
distribution of erosion under a given climate scenario i. 
This probabilistic framing is essential for risk 
management and adaptation planning. 

3.5.5. Participatory and Policy-Oriented Modeling 

The final trend shaping future erosion modeling is 
the move toward participatory decision support. Models 
are increasingly being co-designed with farmers, 
watershed managers, and policymakers to ensure 

usability. Tools such as Participatory GIS (PGIS), 
interactive dashboards, and even VR-based watershed 
visualizations allow non-experts to explore the 
implications of conservation practices in accessible 
ways [48]. Digital twins, for example, can be integrated 
with visualization interfaces that show how soil loss 
changes under alternative land-use scenarios, making 
them powerful communication tools. This shift is not 
only technical but also epistemological: models are no 
longer just for scientists, but for a broader community 
of decision-makers. 

CONCLUSION 

The trajectory of water erosion modeling over the 
past decades demonstrates both significant advances 
and persistent challenges. Empirical approaches such 
as RUSLE and MUSLE provided the first widely 
applicable tools for assessing soil loss, and despite 
their simplicity, they remain indispensable as baseline 
frameworks. Process-based models like WEPP and 
EUROSEM advanced the field by incorporating 
hydrological and sediment transport processes, 
thereby offering mechanistic insights into event-driven 
erosion. However, their extensive data demands and 
calibration requirements limit their use outside 
well-monitored regions. The integration of GIS and 
remote sensing has marked a turning point by enabling 
spatially explicit risk assessments across large areas, 
supported by increasingly accessible satellite imagery 
and digital elevation models. These approaches, 
however, remain constrained by input data quality and 
the necessity of ground validation. Machine learning 
and deep learning methods have introduced 
unprecedented predictive power, capturing complex 
nonlinear relationships and leveraging big data. Yet, 
their limited interpretability and transferability across 
regions highlight the need for frameworks that combine 
predictive accuracy with explanatory depth. Hybrid and 
integrated models represent the current frontier, 
synthesizing the clarity of empirical approaches, the 
rigor of process-based models, and the adaptability of 
AI. Case studies across diverse environments 
consistently demonstrate that hybrid systems 
outperform stand-alone methods in terms of accuracy 
and robustness, though they also require advanced 
expertise and computational resources. Looking 
forward, future-oriented perspectives such as GeoAI, 
digital twins, cloud-based platforms, and participatory 
decision-support systems hold transformative potential. 
These innovations move erosion modeling beyond 
static assessment toward dynamic, probabilistic, and 
stakeholder-inclusive frameworks capable of 
addressing the uncertainties of climate change and 
land-use transformation. From an environmental 
engineering perspective, the outcomes of erosion 
modeling directly inform the design and optimization of 
soil and water conservation structures—such as 
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terraces, check dams, vegetative buffer strips, and 
contour bunds—by identifying erosion hotspots and 
sediment transport pathways. Moreover, model-based 
assessments support watershed engineering and land 
management planning by prioritizing critical sub-basins 
for intervention, estimating sediment yield reduction 
under alternative conservation scenarios, and 
evaluating the cost-effectiveness of mitigation 
strategies. Integrating these insights into policy tools 
enables adaptive management practices that enhance 
soil resilience, water quality, and infrastructure 
stability. Strengthening the connection between 
erosion modeling, climate change adaptation, and 
sustainable land-use planning is essential to achieving 
long-term soil resilience. By integrating erosion risk 
predictions with spatial planning frameworks and 
adaptation policies, model-based insights can guide 
decisions on reforestation, crop rotation, and 
conservation structure placement under future climate 
scenarios. This cross-disciplinary linkage positions 
erosion modeling as a key instrument in advancing 
sustainability goals, supporting both environmental 
protection and socio-economic stability in vulnerable 
regions. 
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