rGO-BCNT/PANI Three-Dimensional Flexible Aerogel Sponge Electrodes and Electrochemical Performance

Authors

  • Yuhan Wang College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P. R. China
  • Siyu Guo College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P. R. China
  • Yanzhi Cai College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P. R. China
  • Zhongyi Hu College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P. R. China
  • Haiming Yu College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P. R. China
  • Dengpeng Chen College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P. R. China

DOI:

https://doi.org/10.12974/2311-8717.2023.11.09

Keywords:

Reduced graphene oxide, Carbon nanotubes, Polyaniline, Flexible aerogel sponge, Electrochemical properties

Abstract

Self-supported flexible supercapacitors have promising applications in wearable electronics. The electrode materials, as a crucial component of supercapacitors, have a decisive impact on the energy storage performance of the entire device. Herein, reduced graphene oxide-boron atom doped-carbon nanotubes/polyaniline (rGO-BCNT/PANI) (rBP) three-dimensional (3D) aerogel sponge electrode materials were prepared by a simple ultrasonic self-assembly followed by reduction-induced self-assembly reaction. The rBP aerogel sponge structure not only provided a channel for electrolyte exchange, but also provided enough space for PANI nanoparticles to withstand the volume change during charging and discharging, and inhibited the decomposition of PANI nanoparticles. As a result, the 3D rBP aerogel sponge with 60 mg PANI addition amount (rBP60) exhibited high specific capacitance (695 F·g-1), high power density (675 W·kg-1), and high energy density (60.95 Wh·kg-1) at 0.5 A·g-1 in a three-electrode system. The 3D rBP60 aerogel sponge electrode material can reach 610 F·g-1 at 2 A·g-1, with a retention rate of up to 88% after 2000 cycles. The Coulombic efficiency of the rBP60 aerogel sponge electrode material was close to or equal to 85.5% at different current densities. The 3D rBP aerogel sponge was exceptionally flexible, maintaining its morphology without damage after 100 compression-release cycles.

References

J. Yan, S.H. Li, B.B. Lan, Y.C. Wu, P.S. Lee, Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors, Advanced Functional Materials 30 (2020).https://doi.org/10.1002/adfm.201902564

J. Huang, Y.P. Xie, Y. You, J.L. Yuan, Q.Q. Xu, H.B. Xie, Y.W. Chen, Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization, Advanced Functional Materials 33 (2023).https://doi.org/10.1002/adfm.202213095

X.L. Chen, R. Paul, L.M. Dai, Carbon-based supercapacitors for efficient energy storage, National Science Review 2017; 4: 453-489.https://doi.org/10.1093/nsr/nwx009

Z.F. Zhao, X.J. Wang, M.J. Yao, L.L. Liu, Z.Q. Niu, J. Chen, Activated carbon felts with exfoliated graphenenanosheets for flexible all-solid-state supercapacitors, Chinese Chemical Letters 2019; 30: 915-918.https://doi.org/10.1016/j.cclet.2019.03.003

Y.L. Shao, M.F. El-Kady, L.J. Wang, Q.H. Zhang, Y.G. Li, H.Z. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors, Chemical Society Reviews 2015; 44: 3639-3665.https://doi.org/10.1039/C4CS00316K

L.B. Dong, C.J. Xu, Y. Li, Z.Z. Pan, G.M. Liang, E.L. Zhou, F.Y. Kang, Q.H. Yang, Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes, Advanced Materials 2016; 28: 9313-9319.https://doi.org/10.1002/adma.201602541

T. Lv, M.X. Liu, D.Z. Zhu, L.H. Gan, T. Chen, Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors, Advanced Materials 30 (2018).https://doi.org/10.1002/adma.201705489

Y.Q. Han, L.M. Dai, Conducting Polymers for Flexible Supercapacitors, Macromolecular Chemistry and Physics 220 (2019).https://doi.org/10.1002/macp.201800355

Q.Q. Qin, X.D. Du, C.X. Xu, S.G. Huang, W.J. Wang, Y. Zhang, J. Yan, J.Q. Liu, Y.C. Wu, Flexible Supercapacitors Based on Solid Ion Conducting Polymer with High Mechanical Strength, Journal of the Electrochemical Society 2017; 164: A1952-A1957.https://doi.org/10.1149/2.0771709jes

A. Eftekhari, L. Li, Y. Yang, Polyanilinesupercapacitors, Journal of Power Sources 2017; 347: 86-107.https://doi.org/10.1016/j.jpowsour.2017.02.054

Y.H. Wang, X. Chu, Z.H. Zhu, D. Xiong, H.T. Zhang, W.Q. Yang, Dynamically evolving 2D supramolecularpolyanilinenanosheets for long-stability flexible supercapacitors, Chemical Engineering Journal 423 (2021).https://doi.org/10.1016/j.cej.2021.130203

X. Cao, H.Y. Zeng, S. Xu, J. Yuan, J. Han, G.F. Xiao, Facile fabrication of the polyaniline/layered double hydroxide nanosheet composite for supercapacitors, Applied Clay Science 2019; 168: 175-183.https://doi.org/10.1016/j.clay.2018.11.011

Reddy, P. C. H.; Amalraj, J; Ranganatha, S; Patil, S.S.; Chandrasekaran, S. A review on effect of conducting polymers on carbon-based electrode materials for electrochemical supercapacitors. Synthetic metals 2023; 298: 117447. https://doi.org/10.1016/j.synthmet.2023.117447

Arora E.K., Sharma V., Ravi A., Shahi A., Jagtap S., Adhikari A., Dash J.K., Kumar P., Patel R. Polyaniline-Based Ink for Inkjet Printing for Supercapacitors, Sensors, and Electrochromic Devices. Energies 16(2023).https://doi.org/10.3390/en16186716

J. Lin, Y. Yan, X. Zheng, Z. Zhong, Y. Wang, J. Qi, J. Cao, W. Fei, Y. Huang, J. Feng, Designing and constructing core-shell NiCo2S4@Ni3S2 on Ni foam by facile one-step strategy as advanced battery-type electrodes for supercapattery, Journal of Colloid and Interface Science 2019; 536: 456-462.https://doi.org/10.1016/j.jcis.2018.10.072

M.S. Kumar, K.Y. Yasoda, S.K. Batabyal, N.K. Kothurkar, Carbon-polyanilinenanocomposites as supercapacitor materials, Materials Research Express 5 (2018).https://doi.org/10.1088/2053-1591/aab911

T. Zheng, X.D. Wang, Y.Y. Liu, R. Bayaniahangar, H.B. Li, C.R. Lu, N. Xu, Z.D. Yao, Y.J. Qiao, D.X. Zhang, P. Abadi, Polyaniline-decorated hyaluronic acid-carbon nanotube hybrid microfiber as a flexible supercapacitor electrode material, Carbon 2020; 159: 65-73.https://doi.org/10.1016/j.carbon.2019.11.074

Y. Zhu, C.W. Tan, S.L. Chua, Y.D. Lim, B. Vaisband, B.K. Tay, E.G. Friedman, C.S. Tan, Assembly Process and Electrical Properties of Top-Transferred Graphene on Carbon Nanotubes for Carbon-Based 3-D Interconnects, Ieee Transactions on Components Packaging and Manufacturing Technology 2020; 10: 516-524.https://doi.org/10.1109/TCPMT.2019.2940511

Y. Cai, X. Li, X. Ren, L. Cheng, Y. Li, T. Liu, S. Huang, Preparation of carbon nanotubes/polyanilinebuckypaper composite electrode by directional pressure filtration and its electrochemical properties, ActaMateriaeCompositaeSinica 39 (2022) 664-676.

T.Q. Hao, W. Wang, D. Yu, A Flexible Cotton-Based Supercapacitor Electrode with High Stability Prepared by Multiwalled CNTs/PANI, Journal of Electronic Materials 2018; 47: 4108-4115.https://doi.org/10.1007/s11664-018-6306-6

Y. Cai, T. Liu, L. Cheng, S. Guo, S. Huang, Z. Hu, Y. Wang, H. Yu, D. Chen, Mechanical and electrochemical properties of carbon nanotubule-polyaniline nanowire/polyaniline nanoparticle high-strength ultra-flexible aerogel buckypaper, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024; 682: 132868.https://doi.org/10.1016/j.colsurfa.2023.132868

P. Xie, W. Yuan, X.B. Liu, Y.M. Peng, Y.H. Yin, Y.S. Li, Z.P. Wu, Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors, Energy Storage Materials 2021; 36: 56-76.https://doi.org/10.1016/j.ensm.2020.12.011

T. Chen, L.M. Dai, Carbon nanomaterials for high-performance supercapacitors, Materials Today 2013; 16: 272-280.https://doi.org/10.1016/j.mattod.2013.07.002

H.Y. Chen, S. Zeng, M.H. Chen, Y.Y. Zhang, Q.W. Li, Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors, Carbon 2015; 92: 271-296.https://doi.org/10.1016/j.carbon.2015.04.010

Q. Jiang, Y. Shang, Y. Sun, Y. Yang, S. Hou, Y. Zhang, J. Xu, A. Cao, Flexible and multi-form solid-state supercapacitors based on polyaniline/graphene oxide/CNT composite films and fibers, Diamond and Related Materials 2019; 92: 198-207.https://doi.org/10.1016/j.diamond.2019.01.004

X. Xiang, Z.J. Deng, H.F. Zhang, C.Q. Gao, S. Feng, Z.H. Liu, Q.Y. Liang, Y.F. Fu, Y.W. Liu, K. Liu, Polyaniline/polydopamine-regulated nitrogen-doped graphene aerogel with well-developed mesoporous structure for supercapacitor electrode, Chemical Engineering Journal 2023; 477: 147211.https://doi.org/10.1016/j.cej.2023.147211

H.P. Xu, Q.L. Hu, T. Zhao, J.Q. Zhu; Z. Lian; X.J. Jin, Sodium carboxymethylcellulose/MXene/zeolite imidazolium framework-67-derived 3D porous carbon aerogel for high-performance asymmetric supercapacitors, Carbohydrate Polymers 2023; 326: 121642.https://doi.org/10.1016/j.carbpol.2023.121641

Z.L. Chen, Y.L. Yang, T. Lv, Y.A. Liu, Y.L. Qi, K.Y. Dong, S.K. Cao, T. Chen, Designing free-standing 3D lamellar/pillared RGO/CNTs aerogels with ultra-high conductivity and compressive strength for elastic energy devices, Journal of Materials Chemistry A 2023; 11: 14187-14194.https://doi.org/10.1039/D3TA01531A

T. Xu, Q. Song, K. Liu, H. Liu, J. Pan, W. Liu, L. Dai, M. Zhang, Y. Wang, C. Si, H. Du, K. Zhang, Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode, Nano-Micro Letters 15 (2023).https://doi.org/10.1007/s40820-023-01073-x

S.K. Xu, S.R. Yan, X. Chen, H.F. Huang, X.Q. Liang, Y.H. Wang, Q. Hu, G.D. Wei, Y. Yang, Vertical porous Ti3CNTx/rGO hybrid aerogels with enhanced capacitive performance, Chemical Engineering Journal 459 (2023).https://doi.org/10.1016/j.cej.2023.141528

J. Ao, R. Miao, J.S. Li, Flexible solid-state supercapacitor based on reduced graphene oxide-enhanced electrode materials, Journal of Alloys and Compounds 2019; 802: 355-363.https://doi.org/10.1016/j.jallcom.2019.06.203

Z.X. Hou, J.J. Li, C.Y. Qu, W. Li, K. Wang, 3D Double-CrosslinkedPolyaniline/p-Phenylenediamine-Modified Graphene Free-Standing Electrodes for High-Performance Supercapacitors, Energy Technology 11 (2023).https://doi.org/10.1002/ente.202201447

D.Y. Wu, J.J. Shao, Graphene-based flexible all-solid-state supercapacitors, Materials Chemistry Frontiers 2021; 5: 557-583.https://doi.org/10.1039/D0QM00291G

J.F. Wu, Q.E. Zhang, J.J. Wang, X.P. Huang, H. Bai, A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors, Energy & Environmental Science 2018; 11: 1280-1286.https://doi.org/10.1039/C8EE00078F

M.G. Hosseini, E. Shahryari, Synthesis, Characterization and Electrochemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor, Journal of Materials Science& Technology 2016; 32: 763-773.https://doi.org/10.1016/j.jmst.2016.05.008

Z.Q. He, D.D. Chen, M. Wang, C.X. Li, X.Y. Chen, Z.J. Zhang, Sulfur modification of carbon materials as well as the redox additive of Na2S for largely improving capacitive performance of supercapacitors, Journal of Electroanalytical Chemistry 856 (2020).https://doi.org/10.1016/j.jelechem.2019.113678

J.Q. Ye, Q. Shao, X.Y. Wang, T.R. Wang, Effects of B, N, P and B/N, B/P pair into zigzag single-walled carbon nanotubes: A first-principle study, Chemical Physics Letters 2016; 646: 95-101.https://doi.org/10.1016/j.cplett.2015.12.056

C. Shao, C.K. Rui, J.X. Liu, A.Q. Chen, K.G. Zhu, Q.Y. Shao, First-Principles Study on the Electronic Transport Properties of B/P, B/As, and B/Sb Co-doped Single-Walled Carbon Nanotubes, Industrial & Engineering Chemistry Research 2020; 59: 19593-19599.https://doi.org/10.1021/acs.iecr.0c03804

H. Fei, N. Saha, N. Kazantseva, T. Babkova, M. Machovsky, G. C. Wang, H. Bao, P. Saha, J. Mater. Polyaniline/reduced graphene oxide hydrogel film with attached graphite current collector for flexible supercapacitors Sci. Mater. Electron. 2018; 29: 3025.https://doi.org/10.1007/s10854-017-8233-3

V. C. Tran, V. H. Nguyen, T. T. Nguyen, J. H. Lee, D. C. Huynh, J. J. Shim, Polyaniline and multi-walled carbon nanotube-intercalated graphene aerogel and its electrochemical properties. Synth. Met. 2016; 215: 150.https://doi.org/10.1016/j.synthmet.2016.02.017

J.N. Ding, Peng Chen, Xuli Chen, and KunkunGuo. Self-Assemble Strategy to Fabricate High Polyaniline Loading Nanocarbon Hydrogels for Flexible All-Solid-State Supercapacitors. ACS Appl. Energy Mater. 2021; 4: 3766-3776.https://doi.org/10.1021/acsaem.1c00176

Wu, J.; Zhang, Q.; Wang, J.; Huang, X.; Bai, H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 2018; 11(5): 1280-1286.https://doi.org/10.1039/C8EE00078F

Li, K.; Liu, J.; Huang, Y.; Bu, F.; Xu, Y. Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. J. Mater. Chem. A 2017; 5(11): 5466-5474.https://doi.org/10.1039/C6TA11224B

J. Chu, X. Li, Q. Li, J. Ma, B. Wu, X. Wang, R. Zhang, M. Gong, S. Xiong, Hydrothermal synthesis of PANI nanowires for high-performance supercapacitor. High Perform. Poly. 2019; 32: 258.https://doi.org/10.1177/0954008319856664

Xing Zhang, YanlingHao, and Wei Zhong, Boron-doped helical carbon nanotubes as active supercapacitor cathode materials: preparation and electrochemical properties. J Mater Sci: Mater Electron 2021; 32: 25269-25278.https://doi.org/10.1007/s10854-021-06984-2

Lee, K., Cho, S., Heum Park, S. et al. Metallic transport in polyaniline. Nature 2006; 441: 65-68.https://doi.org/10.1038/nature04705

Y. Yu, Y. Xi, J. Li, G. Wei, N. I. Klyui, W. Han, Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes. Nanoscale Res. Lett. 2017; 12: 394.https://doi.org/10.1186/s11671-017-2159-9

R. F. Hu, J. Zhao, G. D. Zhu, J. P. Zheng, Fabrication of flexible free-standing reduced graphene oxide/polyanilinenanocomposite film for all-solid-state flexible supercapacitor. Electrochim. Acta 2018; 261: 151.https://doi.org/10.1016/j.electacta.2017.12.138

C. M. Chang, Z. H. Hu, T. Y. Lee, Y. A. Huang, W. F. Ji, W. R. Liu, J. M. Yeh, Y. Wei, Biotemplated hierarchical polyaniline composite electrodes with high performance for flexible supercapacitors. J. Mater. Chem. A 2016; 4: 9133.https://doi.org/10.1039/C6TA01781A

K. Jin, W. Zhang, Y. Wang, X. Guo, Z. Chen, L. Long, Z. Yao, Z. Wang, C. Jian, L. Sun, In-situ hybridization of polyanilinenanofibers on functionalized reduced graphene oxide films for high-performance supercapacitor.

Electrochim. Acta 2018; 285: 221.https://doi.org/10.1016/j.electacta.2018.07.220

NAWAZ S, KHAN Y, KHALID S, et al. Molybdenum disulfide (MoS2) along with graphene nanoplatelets (GNPs) utilized to enhance the capacitance of conducting polymers (PANI and PPy). RSC Advances, 2023; 13(41). https://doi.org/10.1039/D3RA04153K

Xueyu Tao, Shifang Ye, Kehu Zhu, Liyang Dou, Peixin Cui, Jie Ma, Cheng Zhao, Xianyong Wei, LitongGuo, Akbar Hojjati-Najafabadi, and PeizhongFengACS Applied Energy Materials 2023; 6(15): 8177-8188.https://doi.org/10.1021/acsaem.3c01325

Albdiry, M., Al-Nayili, A. Ternary sulfonatedgraphene/polyaniline/carbon nanotubes nanocomposites for high performance of supercapacitor electrodes. Polym. Bull.2023; 80: 8245-8258.https://doi.org/10.1007/s00289-022-04495-6

XU H, CUI L, PAN X, et al. Carboxymethylcellulose -polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors. International Journal of Biological Macromolecules, 2022; 219: 1135-45.https://doi.org/10.1016/j.ijbiomac.2022.08.141

Downloads

Published

2023-12-30

How to Cite

Wang, Y. ., Guo, S. ., Cai, . Y. ., Hu, Z. ., Yu, H. ., & Chen, D. . (2023). rGO-BCNT/PANI Three-Dimensional Flexible Aerogel Sponge Electrodes and Electrochemical Performance. Journal of Composites and Biodegradable Polymers, 11, 64–74. https://doi.org/10.12974/2311-8717.2023.11.09

Issue

Section

Articles