Electrodeposition of One-Dimensional Nanostructures: Environmentally Friendly Method

Authors

  • Vicente de Oliveira Sousa Neto Laboratory of Study and Research in Pollutants Removal by Adsorption – LERPAD, Department of Chemistry – State University of Ceara (UECE-FECLESC), Rua Jose´ de Queiroz Pessoa, N1 2554 – University Plateau –CEP: 63.900-000 – Quixada´/CE, Brazil
  • Gilberto Dantas Saraiva Laboratory of Synthesis and Characterization of Materials – LASCAM, Department of Physics, State. University of Ceara´ (UECE-FECLESC), Rua Jose´ de Queiroz Pessoa, N1 2554 – University Plateau – CEP: 63.900-000 – Quixada´/CE, Brazil
  • A. J. Ramiro de Castro Crystal Characterization and Processing Laboratory, Department of Physics, Federal University of Ceara – UFC, Fortaleza, Brazil and Physics - Federal University of Ceará -Brazil ;Federal University of Ceara´ – UFC, Quixada/CE Av. Jose´ de Freitas Queiroz, 5003, Quixada´ – CE, 63902-580, Brazil
  • Paulo de Tarso Cavalcante Freire Crystal Characterization and Processing Laboratory, Department of Physics, Federal University of Ceara – UFC, Fortaleza, Brazil and Physics - Federal University of Ceará -Brazil ;Federal University of Ceara´ – UFC, Quixada/CE Av. Jose´ de Freitas Queiroz, 5003, Quixada´ – CE, 63902-580, Brazil
  • Ronaldo Ferreira do Nascimento Laboratory of Trace Analysis (LAT) – Department of Analytical and Physical Chemistry, Federal University of Ceara – UFC, Fortaleza, Brazil

DOI:

https://doi.org/10.12974/2311-8717.2022.10.03

Keywords:

Nanostructures, Environmentally friendly, Electrodeposition

Abstract

During the past decade, nanotechnology has become an active field of research because of its huge potential for a variety of applications. When the size of many established, well-studied materials is reduced to the nanoscale, radically improved or new surprising properties often emerge. There are mainly four types of nanostructures: zero, one, two and three dimensional structures. Among them, one-dimensional (1D) nanostructures have been the focus of quite extensive studies worldwide, partially because of their unique physical and chemical properties. Compared to the other three dimensional structures, the first characteristic of 1D nanostructure is its smaller dimension structure and high aspect ratio, which could efficiently transport electrical carriers along one controllable direction; as a consequence they are highly suitable for moving charges in integrated nanoscale systems. The second characteristic of 1D nanostructure is its device function, which can be exploited as device elements in many kinds of nanodevices. Indeed it is important to note that superior physical properties including superconductivity, enhanced magnetic coercivity and the unusual magnetic state of some 1D nanostructures have been theoretically predicted and some of them have already been confirmed by experiments. In order to attain the potential offered by 1D nanostructures, one of the most important issues is how to synthesize 1D nanostructures in large quantities with a convenient method. Many synthetic strategies, such as solution or vapor-phase approaches, template-directed methods, electrospinning techniques, solvothermal syntheses, self-assembly methods, etc., have been developed to fabricate different classes of 1D nanostructured materials, including metals, semiconductors, functional oxides, structural ceramics, polymers and composites. All the methods can be divided into two categories: those carried out in a gas phase (i.e., “dry processes”) and those carried out in a liquid phase (i.e., “wet processes”). The dry processes include, for example, techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD), pulse laser deposition (PLD), metal-organic chemical vapor deposition (MOCVD), and molecular beam epitaxy (MBE). In general, these gas phase processes require expensive and specialized equipments. The wet processes include sol-gel method, hydrothermal method, chemical bath deposition (CBD) and electrodeposition. Among the above mentioned methods, electrodeposition has many advantages such as low cost, environmentally friendly, high growth rate at relatively low temperatures and easier control of shape and size. Generally, there are two strategies to produce the 1D nanostructures through the electrochemical process. They are the template-assisted electrodeposition, and the template-free electrodeposition. In this chapter, we will approach the recent progress and offer some prospects of future directions in electrodeposition of 1D nanostructures. Electrodeposition is a simple and flexible method for the synthesis of one-dimensional (1D) nanostructures and has attracted great attention in recent years.

References

Ronaldo Fereira do Nascimento, Odair Pastor Ferreira, Amauri Jardim De Paula, Vicente de Oliveira Sousa Neto, In Advanced Nanomaterials, Nanomaterials Applications for Environmental Matrices, Elsevier, 2019, Pages 489-508, ISBN 9780128148297,https://doi.org/10.1016/B978-0-12814829-7.00027-6. (http://www.sciencedirect.com/science/article/pii/B978012814 8297000276)

Li, Y, Xu,J., Liu,H., Song,J., Li, Y. Cheng, B., Li,J.1, Li, X. 2017.A template/electrochemical deposition method for fabricating silver nanorod arrays based on porous anodic alumina. Nanomaterials and Nanotechnology.7,1-7. https://doi.org/10.1177/1847980417717543

Chen, M.S.; Fan, F.Y.; Lin, C.K.; Chen, C.C. Enhanced Diffusion Bonding Between High Purity Aluminum and 6061 Aluminum by Electrolytic Polishing Assistance. Int. J. Electrochem. Sci. 2016, 11, 4922-4929.. https://doi.org/10.20964/2016.06.73

Ide, S.; Capraz, Ö.Ö.; Shrotriya, P.; Hebert, K.R. Oxide Microstructural Changes Accompanying Pore Formation during Anodic Oxidation of Aluminum. Electrochim. Acta 2017, 232, 303-309. https://doi.org/10.1016/j.electacta.2017.02.113

Muench, F. Metal Nanotube/Nanow ire-Based Unsupported Network Electrocatalysts. Catalysts 2018, 8, 597. https://doi.org/10.3390/catal8120597

Galstyan, V.; Comini, E.; Ponzoni, A.; Sberveglieri, V.; Sberveglieri, G. ZnO Quasi-1D Nanostructures: Synthesis, Modeling, and Properties for Applications in Conductometric Chemical Sensors. Chemosensors 2016, 4, 6.. https://doi.org/10.3390/chemosensors4020006

Hun, C.W.; Chiu, Y.-J.; Luo, Z.; Chen, C.C.; Chen, S.H. A New Technique for Batch Production of Tubular Anodic Aluminum Oxide Films for Filtering Applications. Appl. Sci. 2018, 8, 1055. https://doi.org/10.3390/app8071055

Tatsi,E. Griffini,G.2019.Polymeric materials for photon management in photovoltaics,Solar Energy Materials and Solar Cells,196,Pages 43-56. https://doi.org/10.1016/j.solmat.2019.03.031

Liu, M., Peng,T., Li, H., Zhao, L., Sang, Y., Feng,Q., Xu, L., Jiang, Y., Liu, H., Zhang, J., 2019.Photoresponsive nanostructure assisted green synthesis of organics and polymers,Applied Catalysis B: Environmental, 249, 172-210, https://doi.org/10.1016/j.apcatb.2019.02.071

Konishi, Y.; Motoyama, M.; Matsushima, H.; Fukunaka, Y.; Ishii, R. & Ito, Y., (2003). "Electrodeposition of Cu nanowire arrays with a template," J. Electroanalytical Chemistry 559, 149-153, ISSN: 0022-0728. https://doi.org/10.1016/S0022-0728(03)00157-8

Rahman, I. Z.; Razeeb, K. M.; Kamruzzaman, M. & Serantoni M. (2004). "Characterisation of electrodeposited nickel nanowires using NCA template," J. Materials Processing Technology 153-154, 811-815, ISSN: 0924-0136. https://doi.org/10.1016/j.jmatprotec.2004.04.168

Rabin, O.; Herz, P. R.; Lin, Y.-M.; Akinwande, A. I.; Cronin, S. B. & Dresselhaus, M. S. (2003). "Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass," Advanced Functional Materials 13, 631-638, ISSN: 1616-3028. https://doi.org/10.1002/adfm.200304394

She, G.; Shi, W.; Zhang, X.; Wong, T.; Cai, Y. & Wang, N. (2009). "Template-Free Electrodeposition of One- Dimensional Nanostructures of Tellurium," Crystal Growth & Design 9(2), 663-666, ISSN: 1528-7505. https://doi.org/10.1021/cg800948w

Oliveira, C. P.; Freitas, R. G.; Mattoso, L. H. C. & Pereira, E. C. (2008). "Nanostructured Materials Synthesized Using Electrochemical Techniques". In Nanostructured Materials in Electrochemistry; Eftekhari, A., Ed.; Wiley-Vch Verlag GmbH & Co. KGaA: Weinheim: Germany, Chapter 2, pp. 117-186, ISBN: 978-3-527-62150-7. https://doi.org/10.1002/9783527621507.ch2

Vázquez, L.; Creus, A. H.; Carro, P.; Ocon, P.; Herrasti, P.; Palacio, C.; Vara, J. M.; Salvarezza, R. C. & Arvia, A. J. (1992). "Scanning Tunneling Microscopy and Scanning Electron Microscopy Observations of the Early Stage of Silver Deposition on Graphite Single Crystal Electrodes," J. Phys. Chem. 96, 10454-10460, ISSN: 1089-7690. https://doi.org/10.1021/j100204a062

Pötzschke, R. T.; Gervasi, C. A.; Vinzelberg, S.; Staikov, G. & Lorenz, W. J. (1995). "Nanoscale Studies of Electrodeposition on HOPG (0001)," Electrochimica Acta 40(10), 1469-1474, ISSN: 0013-4686. https://doi.org/10.1016/0013-4686(95)00049-K

Zoval, J. V.; Stiger, R. M.; Biernacki, P. R. & Penner, R. M. (1996). "Electrochemical Deposition of Silver Nanocrystallites on the Atomically Smooth Graphite Basal Plane" J. Phys. Chem. 100, 837-844, ISSN: 1089-7690. https://doi.org/10.1021/jp952291h

Martín, H.; Carro, P.; Creus, A. H.; González, S.; Salvarezza, R. C. & Arvia, A. J. (1997). "Growth Mode Transition Involv ing a Potential-Dependent Isotropic to Anisotropic Surface Atom Diffusion Change. Gold Electrodeposition on HOPG followed by STM," Langmuir 13(1), 100-110, ISSN: 1520-5827. https://doi.org/10.1021/la960700a

Zach, M. P.; Ng, K. H. & Penner, R. M. (2000). "Molybdenum Nanowires by Electrodeposition," Science 290, 2120-2123, ISSN: 1095-9203. https://doi.org/10.1126/science.290.5499.2120

Gimeno, Y.; Creus, A. H.; González, S.; Salvarezza, R. C. & Arvia, A. J. (2001). "Preparation of 100-160-nmsized Branched Palladium Islands with Enhanced Electrocatalytic Properties on HOPG," Chem. Mat. 13(5), 1857-1864, ISSN: 1520-5002. https://doi.org/10.1021/cm0100164

Gimeno, Y.; Creus, A. H.; Carro, P.; González, S.; Salvarezza, R. C. & Arvia, A. J. (2002). "Electrochemical Formation of Palladium Islands on HOPG: Kinetics, Morphology, and Growth Mechanisms," J. Phys. Chem. B 106(16), 4232-4244, ISSN: 1520-5207. https://doi.org/10.1021/jp014176e

Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T. & Penner, R. M. (2001). "Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays," Science 293, 2227-2231, ISSN: 1095-9203. https://doi.org/10.1126/science.1063189

Zoval, J. V.; Lee, J.; Gorer, S. & Penner, R. M. (1998). "Electrochemical Preparation of Platinum Nanocrystallites with Size Selectivity on Basal Plane Oriented Graphite Surfaces," J. Phys. Chem. B 102(7), 1166-1175, ISSN: 15205207. https://doi.org/10.1021/jp9731967

Bengough, G. D. & Stuart, J. M. (1923). Brit. Patent 223, 994.

Thompson, G. E. & Wood, G. C. (1983). "Anodic Films on Aluminium". In Treatise on Materials Science and Technology, Vol. 23, Corrosion: Aqueous Process and Passive Films; Scully, J. C., Ed.; Academic Press Inc., New York, Chapter 5, pp. 205-329, ISBN: 978-0-12-633670-2. https://doi.org/10.1016/B978-0-12-633670-2.50010-3

Despic, A. & Parkhutik, V. P. (1989). "Electrochemistry of Aluminum in Aqueous Solutions and Physics of its Anodic Oxide". In Modern Aspects of Electrochemistry; Bokris, J. O'M., White, R. E. & Conwa, B. E., Eds.; Plenum Press: New York, Vol. 23, Chapter 6, pp. 401-503, ISBN: 978-1-46848762-6. https://doi.org/10.1007/978-1-4684-8762-6_6

Martin, C. R. (1996). "Membrane-Based Synthesis of Nanomaterials" Chem. Mater. 8, 1739-1746, ISSN: 15205002. https://doi.org/10.21236/ADA309882

Maw law i, D.; Coombs, N. & Moskovits, M. (1991). "Magnetic properties of iron deposited into anodic aluminum oxide pores as a function of particle size Al," J. Applied Physics 70(8), 4421-4425, ISSN: 1089-7550. https://doi.org/10.1063/1.349125

Tsuya, N.; Tokushima, T.; Shiraki, M.; Wakui, Y.; Saito, Y.; Nakamura, H.; Hayano, S.; Furugori, A. & Tanaka, M. (1986). "Alumite disc using anodic oxidation," IEEE Transactions on Magnetics MAG-22, 1140-1144, ISSN: 0018-9464. https://doi.org/10.1109/TMAG.1986.1064316 https://doi.org/10.1177/1847980417717543

Kawai, S., (1988). Proc. Electrochem. Soc. (Proc. Symp.Electrochem. Technol. Electron., 1987), 88-23, 389-400.

Spratt, G. W. D.; Bissell, P. R.; Chantrell, R. W. & Wohlfarth,E. P. (1988). "Static and Dynamic Experimental Studies of Particulate Recording Media" J. Magnetism and MagneticMaterials 75, 309-318, ISSN: 1873-4766.https://doi.org/10.1016/0304-8853(88)90036-4

Samwel, E. O.; Bissell, P. R. & Lodder, J. C. (1993)."Remanent magnetic measurements on perpendicularrecording materials with compensation for demagnetizing fields," J. Applied Physics 73(3), 1353-1359, ISSN: 10897550.https://doi.org/10.1063/1.353255

Li, F.; Bao, X.; Metzger, R. M. & Carbucicchio, M. (1996). "Lanthanide and boron oxide-coated a-Fe particles," J.Applied Physics 79(8), 4869-4871, ISSN: 1089-7550. https://doi.org/10.1063/1.361924

Li, F. & Metzger, R. M. (1997). "Activation volume of a-Fe particles in alumite films," J. Applied Physics 81, 3806-3808,ISSN: 1089-7550. https://doi.org/10.1063/1.364776

Masuda, H. & Satoh, M. (1996). "Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask," Japanese J. Applied Physics 35, L126,ISSN: 1347-4065. https://doi.org/10.1143/JJAP.35.L126

Masuda, H. & Fukuda, K. (1995). "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of HoneycombStructures of Anodic Alumina," Science 268, 1466-1468, ISSN: 1095-9203.https://doi.org/10.1126/science.268.5216.1466

Diggle, J. W.; Downie, T. C. & Goulding, C. W. (1969)."Anodic oxide films on aluminum," Chemical Reviews 69(3), 365-405, ISSN: 1520-6890.https://doi.org/10.1021/cr60259a005

Keller, F.; Hunter, M. S. & Robinson, D. L. (1953). "StructuralFeatures of Oxide Coatings on Aluminum," J. Electrochem.Soc. 100(9), 411-419, ISSN: 1945-7111.https://doi.org/10.1149/1.2781142

Thompson, G. E. (1997). "Porous anodic alumina:fabrication, characterization and applications," Thin SolidFilms 297(1-2), 192-201, ISSN: 0040-6090.https://doi.org/10.1016/S0040-6090(96)09440-0

Osamu, N.; Tatsuya, K.; Shungo, N. & Ryosuke, S. (2013)."Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing"Scientific Reports 3: 2748, 1-6, ISSN: 2045-2322.https://doi.org/10.1038/srep02748

Kape, J. M. (1961). "Unusual anodizing processes and theirpractical significance," Electroplating & Metal Finishing 14, 407-415, ISSN: 0013-5305.

Keller, F.; Hunter, M. S. & Robinson, D. L. (1953). "Structural features of oxide coatings on aluminum," J. Electrochem.Soc. 100, 411-419, ISSN: 1945-7111. https://doi.org/10.1149/1.2781142

Chu, S. Z.; Wada, K.; Inoue, S.; Isogai, M.; Katsuta, Y. & Yasumori, A. (2006). "Large-Scale Fabrication of OrderedNanoporous Alumina Films with Arbitrary Pore Intervals by Critical-Potential Anodization," J. Electrochem. Soc. 153(9),B384-B391, ISSN: 1945-7111.https://doi.org/10.1149/1.2218822

Lee, W.; Nielsch, K. & Gösele, U. (2007). "Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) inmalonic acid anodization," Nanotechnology 18(47), 475713,ISSN: 1361-6528.https://doi.org/10.1088/0957-4484/18/47/475713

Verwey, E. J. W. (1935). "Electrolytic conduction of a solidinsulator at high voltages-formation of the anodic oxide filmon aluminum," Physica (The Hague) 2, 1059-1063.https://doi.org/10.1016/S0031-8914(35)90193-8

Mott, N. F. (1947). "Theory of the formation of protectiveoxide films on metals - III," Trans. Faraday Soc. 43, 429-434. https://doi.org/10.1039/TF9474300429

Lee, W. & Park, S. -J. (2014). "Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of FunctionalNanostructures," Chemical Reviews 114(15), 7487-7556, ISSN: 1520-6890.https://doi.org/10.1021/cr500002z

Hnida, K.; Mech, J. & Sulka, G. D. (2013). "Templateassistedelectrodeposition of indium-antimony nanowires - Comparison of electrochemical methods," Appl. Surface Sci.287, 252-256, ISSN: 0169-4332. https://doi.org/10.1016/j.apsusc.2013.09.135

Yang, Y. W.; Li, L.; Huang, X. H.; Ye, M.; Wu, Y. C. & Li, G. H. (2006). "Transport properties of InSb nanowire arrays,"Appl. Phys. A 84, 7-9, ISSN: 1432-0630. https://doi.org/10.1007/s00339-006-3585-1

Yang, Y. W., Li, L., Huang, X. H., Li, G. H., Zhang, L., (2007). "Fabrication and optical property of single-crystalline InSbnanowire arrays," J. Materials Science 42, 2753-2757, ISSN: 1573-4803.https://doi.org/10.1007/s10853-006-1272-4

Chen, Y.-H.; Shen, Y.-M.; Wang, S.-C. & Huang, J.-L. (2014). "Fabrication of one-dimensional ZnO nanotube and nanowirearrays with an anodic alumina oxide template via electrochemical deposition," Thin Solid Films 570, Part B,303-309, ISSN: 0040-6090.https://doi.org/10.1016/j.tsf.2014.03.014

Schlenoff, J. B. (2006). US20067105052B1.

She, G.; Mu L. & Shi, W. (2009). "Electrodeposition of One-Dimensional Nanostructures," Recent Patents on Nanotech.3, 182-191, ISSN: 2212-4020. https://doi.org/10.2174/187221009789177777

Jung, T.; Schlittler, R.; Gimzewski, J. K. & Himpsel, F. J. (1995). "One-dimensional metal structures at decoratedsteps," Appl. Phys. A 61, 467-474, ISSN: 1432-0630. https://doi.org/10.1007/BF01540248

Himpsel, F. J.; Jung, T.; Kirakosian, A.; Lin, J. L.; Petrovykh, D. Y.; Rauscher, H. & Viernow, J. (1999). "Nanowires by stepdecoration," MRS Bull 24(8), 20-24, ISSN: 1938-1425. https://doi.org/10.1557/S0883769400052854

Blanc, M.; Kuhnke, K.; Marsico, V. & Kern, K. (1998). "Probing step decoration by grazing-incidence heliumscattering," Surf. Sci. Lett. 414, L964-L969, ISSN: 0167-2584.https://doi.org/10.1016/S0039-6028(98)00561-5

Gambardella, P.; Blanc, M.; Brune, H.; Kuhnke, K. & Kern, K.(2000). "One-dimensional metal chains on Pt vicinal surfaces," Phys. Rev. B 61, 2254-2262, ISSN: 1550-235X.https://doi.org/10.1103/PhysRevB.61.2254

Himpsel, F. J. & Ortega, J. E. (1994). "Edge state and terracestate for Cu on W(331) and W(110)," Phys. Rev. B 50(7),4992-4995, ISSN: 1550-235X.https://doi.org/10.1103/PhysRevB.50.4992

Mundschau, M.; Bauer, E.; Telieps, W. & Swiech, W. (1989)."Initial epitaxial growth of copper silicide on silicon {111}studied by low-energy electron microscopy and photoemission electron microscopy," J. Applied Physics65(12), 4747-4752, ISSN: 1089-7550. https://doi.org/10.1063/1.343227

Penner, R. M. (2002). "Mesoscopic Metal Particles and Wires by Electrodeposition," J. Phys. Chem. B 106(13), 3339-3353,ISSN: 1520-5207. https://doi.org/10.1021/jp013219o

Nichols, R. J.; Kolb, D. M. & Behm, R. J. (1991). "STM observations of the initial stages of copper deposition on goldsingle-crystal electrodes," J. Electroanalytical Chemistry Interfac ial Electrochemistry 313, 109-119, ISSN: 1572-6657.https://doi.org/10.1016/0022-0728(91)85174-N

Dekoster, J.; Degroote, B.; Pattyn, H.; Langouche, G.; Vantomme, A. & Degroote, S. (1999). "Step decoration during deposition of Co on Ag(001) by ultralow energy ion beams," Appl. Phys. Lett. 75, 938-940, ISSN: 1077-3118. https://doi.org/10.1063/1.124560

Jung, T.; Schlittler, R.; Gimzewski, J. K. & Himpsel, F. J. (1995). "One-dimensional metal structures at decorated steps," Appl. Phys. A 61(5), 467-474, ISSN: 1432-0630. https://doi.org/10.1007/BF01540248

Zach, M. P.; Ng, K. H. & Penner, R. M. (2000). "Molybdenum nanowires by electrodeposition," Science 290, 2120-2123, ISSN: 1095-9203. https://doi.org/10.1126/science.290.5499.2120

Menke, E. J.; Li, Q. & Penner, R. M. (2004). "Bismuth telluride (Bi2Te3) nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration," Nano Lett. 4, 2009-2014, ISSN: 1530-6992. https://doi.org/10.1021/nl048627t

Pandey, R. K.; Sahu, S. N. & Chandra, S. (1996). "Handbook of semiconductor electrodeposition". CRC Press, Marcel Dekker Inc., 304 p. ISBN: 978-0-824-79701-0.

Morin, S.; Lachenwitzer, A.; Magnussen, O. M. & Behm, R. J. (1999). "Potential-Controlled Step Flow to 3D Step Decoration Transition: Ni Electrodeposition on Ag(111)," Phys. Rev. Lett. 83, 5066-5069, ISSN: 1079-7114. https://doi.org/10.1103/PhysRevLett.83.5066

Otero, R.; Rosei, F.; Naitoh, Y.; Jiang, P.; Thostrup, P.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C. & Besenbacher, F. (2004). "Nanostructuring Cu Surfaces Using Custom-Designed Molecular Molds," Nano Lett. 4(1), 75-78, ISSN: 1530-6992. https://doi.org/10.1021/nl0348793

Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G. & Whitesides, G. M. (2005). "New Approaches to Nanofabrication: Molding, Printing, and Other Techniques," Chemical Reviews 105(4), 1171-1196, ISSN: 1520-6890. https://doi.org/10.1021/cr030076o

Li, Q.; Newberg, J. T.; Walter, E. C.; Hemminger, J. C. & Penner, R. M. (2004). "Polycrystalline Molybdenum Disulfide (2H-MoS2) Nano- and Microribbons by Electrochemical/Chemical Synthesis," Nano Lett. 4(2), 277281, ISSN: 1530-6992. https://doi.org/10.1021/nl035011f

Li, Q.; O lson, J. B. & Penner, R. M. (2004). "Nanocrystalline a-MnO2 Nanowires by Electrochemical Step-Edge Decoration," Chem. Mater. 16(18), 3402-3405, ISSN: 1520- 5002. https://doi.org/10.1021/cm049285v

Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T. & Penner, R. M. (2001). "Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays," Science 293, 2227-2231, ISSN: 1095-9203. https://doi.org/10.1126/science.1063189

Price, P. B. & Walker, R. M. (1962). "Chemical etching of charged-particle tracks in solids," J. Applied Physics 33, 3407-3412, ISSN: 1089-7550. https://doi.org/10.1063/1.1702421

Fleischer, R. L. & Price, P. B. (1963). "Charged particle tracks in glass," J. Applied Physics 34, 2903-2904, ISSN: 1089-7550. https://doi.org/10.1063/1.1729828

Fleischer, R. L.; Price, P. B. & Walker, R. M. (1975). "Nuclear tracks in solids: principles and applications". University of California Press, 605 p. ISBN: 0-520-02665-9. https://doi.org/10.1525/9780520320239

Chien, C. L.; Searson, P. S. C. & Liu, K. (2001). US20016187165.

Sager, B. M. & Roscheisen, M. R. (2005). US20056852920B2.

Martin, C. R. (1996). "Membrane-Based Synthesis of Nanomaterials," Chem. Mater. 8(8), 1739-1746, ISSN: 1520- 5002. https://doi.org/10.21236/ADA309882

Brumlik, C. J. & Martin, C. R. (1991). "Template Synthesis of Metal Microtubules," J. Am. Chem. Soc. 113(8), 3174-3175, ISSN: 1520-5126. https://doi.org/10.21236/ADA232827

Chakarvarti, S. K. & Vetter, J. (1993). "Microfabrication of metal-semiconductor heterostructures and tubules using nuclear track filters," J. Micromechanics Microengineering 3, 57-59, ISSN: 1361-6439. https://doi.org/10.1088/0960-1317/3/2/004

Chakarvarti, S. K. & Vetter, J. (1991). "Morphology of etched pores and microstructures fabricated from nuclear track filters," J. Nuclear Instruments Methods in Physics Research B 62, 109-115, ISSN: 0168-583X. https://doi.org/10.1016/0168-583X(91)95936-8

Tian, M.; Wang, J.; Kumar, N.; Han, T.; Kobayashi, Y.; Liu, Y.; Mallouk, T. E. & Chan, M. H. W. (2006). "Observation of Superconductivity in Granular Bi Nanowires Fabricated by Electrodeposition," Nano Lett. 6(12), 2773-2780, ISSN: 1530- 6992. https://doi.org/10.1021/nl0618041

Molares, M. E. T.; Buschmann, V.; Dobrev, D.; Neumann, R.; Scholz, R.; Schuchert, I. U. & Vetter, J. (2001). "Singlecrystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes," Advanced Materials 13(1), 62-65, ISSN: 1521-4095. https://doi.org/10.1002/1521-4095(200101)13:1<62::AIDADMA62>3.0.CO;2-7

Sander, M. S. & Gao, H. (2005). "Aligned Arrays of Nanotubes and Segmented Nanotubes on Substrates Fabricated by Electrodeposition onto Nanorods," J. Am. Chem. Soc. 127(35), 12158-12159, ISSN: 1520-5126. https://doi.org/10.1021/ja0522231

Hernández, R. M.; Richter, L.; Semancik, S.; Stranick, S. & Mallouk, T. E. (2004). "Template Fabrication of ProteinFunctionalized Gold-Polypyrrole-Gold Segmented Nanowires," Chem. Mater. 16(18), 3431-3438, ISSN: 15205002. https://doi.org/10.1021/cm0496265

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F. & Yan, H. Q. (2003). "OneDimensional Nanostructures: Synthesis, Characterization, and Applications," Advanced Materials 15(5), 353-389, ISSN: 1521-4095. https://doi.org/10.1002/adma.200390087

Feng, Z.; Zhang, Q.; Lin, L.; Guo, H.; Zhou, J. & Lin, Z. (2010). "⟨0001⟩-Preferential Growth of CdSe Nanowires on Conducting Glass: Template-Free Electrodeposition and Application in Photovoltaics," Chem. Mater. 22(9), 27052710, ISSN: 1520-5002. https://doi.org/10.1021/cm901703d

Tena-Zaera, R.; Katty, A.; Bastide, S. & Levy-Clement, C. (2007). "Annealing Effects on the Physical Properties of Electrodeposited ZnO/CdSe Core-Shell Nanowire Arrays," Chem. Mat. 19(7), 1626-1632, ISSN: 1520-5002. https://doi.org/10.1021/cm062390f

He, Z.; Jie, J.; Zhang, W.; Zhang, W.; Luo, L.; Fan, X.; Yuan, G.; Bello, I. & Lee, S.-T. (2009). "Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping," Small 5(3), 345-350, ISSN: 1613-6810. https://doi.org/10.1002/smll.200801006

Ma, C. & Wang, Z. L. (2005). "Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws - a step towards," Advanced Materials 17(21), 2635-2639, ISSN: 1521-4095. https://doi.org/10.1002/adma.200500805

Wang, G. X.; Park, M. S.; Liu, H. K.; Wexler, D. & Chen, J. (2006). "Synthesis and characterization of one-dimensional CdSe nanostructures," Appl. Phys. Lett. 88(19), 193115, ISSN: 1077-3118. https://doi.org/10.1063/1.2202725

She, G.; Zhang, X.; Shi, W.; Cai, Y.; Wang, N.; Liu, P. & Chen, D. (2008). "Template-Free Electrochemical Synthesis of Single-Crystal CuTe Nanoribbons," Crystal Growth & Design 8(6), 1789-1791, ISSN: 1528-7505. https://doi.org/10.1021/cg7008623

(a) Shi, W. S. & She, G. W. (2008): CN10100983.0.(b) Algarni, Z.; Singh, A.; Philipose, U. Synthesis of Amorphous InSb Nanowires and a Study of the Effects of Laser Radiation and Thermal Annealing on Nanowire Crystallinity. Nanomaterials 2018, 8, 607. https://doi.org/10.3390/nano8080607

Shi, W. S. & She, G. W. (2008): CN101009826.

Tadros, Th. F. (Ed.) (1984). In Surfactants, Academic Press, London, 342 p. ISBN: 978-0-12682.

Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R. & Wang, J. H. (1997). "Mesoporous platinum films from lyotropic liquid crystalline phases," Science 278, 838-840, ISSN: 1095-9203. https://doi.org/10.1126/science.278.5339.838

Bartlett, P. N. & Marwan, J. (2003). "Electrochemical Deposition of Nanostructured (H1-e) Layers of Two Metals in Which Pores within the Two Layers Interconnect," Chem. Mater. 15(15), 2962-2968, ISSN: 1520-5002. https://doi.org/10.1021/cm0210400

Bartlett, P. N. & Marwan, J. (2003). "Preparation and characterization of H1-e rhodium films," Microporous Mesoporous Materials. 62(1-2), 73-79, ISSN 1387-1811. https://doi.org/10.1016/S1387-1811(03)00394-9

Braun, P. V.; Osenar, P.; Twardowski, M.; Tew, G. N. & Stupp, S. I. (2005). "Macroscopic Nanotemplating of Semiconductor Films with Hydrogen-Bonded Lyotropic Liquid Crystals," Advanced Functional Materials 15(11), 1745-1750, ISSN: 1616-3028. https://doi.org/10.1002/adfm.200500083

Shin, H. -C.; Dong, J. & Liu, M. (2003). "Nanoporous Structures Prepared by an Electrochemical Deposition Process," Advanced Materials 15(19), 1610-1614, ISSN: 1521-4095. https://doi.org/10.1002/adma.200305160

Xu, L.; Tung, L. D.; Spinu, L.; Zakhidov, A. A.; Baughman, R. H. & Wiley, J. B. (2003). "Synthesis and Magnetic Behavior of Periodic Nickel Sphere Arrays," Advanced Materials 15(18), 1562-1564, ISSN: 1521-4095. https://doi.org/10.1002/adma.200305030

Lai, M.; Kulak, A. N.; Law, D.; Zhang, Z.; Meldrum, F. C. & Riley, D. J. (2007). "Profiting from nature: macroporous copper with superior mechanical properties," Chem. Commun., 3547-3549, ISSN: 1364-548X. https://doi.org/10.1039/b707469g

Zhu, J.; Gui, Z. & Ding, Y., (2008). "A simple route to lanthanum hydroxide nanorods," Mat. Lett. 62(16), 2373- 2376, ISSN: 0167-577X. https://doi.org/10.1016/j.matlet.2007.12.002

Deng, J.; Zhang, L.; Au, C. T. & Dai, H. (2009). "Templatefree synthesis of high surface area single-crystalline lanthanum hydroxide nanorods via a low-temperature solution route," Mat. Lett. 63(6-7), 632-634, ISSN: 0167- 577X. https://doi.org/10.1016/j.matlet.2008.12.005

Ma, X.; Zhang, H.; Ji, Y.; Xu, J. & Yang, D. (2004). "Synthesis of ultrafine lanthanum hydroxide nanorods by a simple hydrothermal process," Mat. Lett. 58, 1180-1182, ISSN: 0167-577X. https://doi.org/10.1016/j.matlet.2003.08.031

Yao, C.-Z.; Wei, B.-H.; Ma, H.-X.; Gong, Q.-J.; Jing, K.-W.; Sun, H. & Meng, L.-X. (2011). "Facile fabrication of La (OH) 3 nanorod arrays and their application in wastewater treatment," Mat. Lett. 65(3), 490-492, ISSN: 0167-577X. https://doi.org/10.1016/j.matlet.2010.10.065

González-Rovira, L.; Sánchez-Amaya, J. M.; López-Haro, M.; Hungria, A. B.; Boukha, Z.; Bernal, S. & Botana, F. J. (2008). "Formation and characterization of nanotubes of La(OH)3 obtained using porous alumina membranes," Nanotechnology 19, 495305-495314, ISSN: 1361-6528. https://doi.org/10.1088/0957-4484/19/49/495305

Zheng, D.; Shi, J.; Lu, X.; Wang, C.; Liu, Z.; Liang, C.; Liu, P. & Tong, Y. (2010). "Controllable growth of La(OH)3 nanorod and nanotube arrays," Crystal Engineering Communications 12, 4066-4070, ISSN: 1466-8033. https://doi.org/10.1039/c0ce00247j

Bocchetta, P.; Santamaria, M. & Quarto, F. D. (2007). "Template electrosynthesis of La(OH)3 and Nd(OH)3 nanowires using porous anodic alumina membranes," Electrochemistry Communications 9, 683-688, ISSN: 13882481. https://doi.org/10.1016/j.elecom.2006.10.053

Tissue, B. M. (1998). "Synthesis and Luminescence of Lanthanide Ions in Nanoscale Insulating Hosts," Chem. Mat. 10(10), 2837-2845, ISSN: 1520-5002. https://doi.org/10.1021/cm9802245

Mao, G.; Zhang, H.; Li, H.; Jin, J. & Niu, S. (2012). "Selective Synthesis of Morphology and Species Controlled La2O3:Eu3+ and La2O2CO3:Eu3+ Phosphors by Hydrothermal Method," J. Electrochem. Soc. 159(3), J48- J53, ISSN: 1945-7111. https://doi.org/10.1149/2.031203jes

Murray, E. P.; Tsai, T. & Barnett, S. A. (1999). "A directmethane fuel cell with a ceria-based anode," Nature 400, 649-651, ISSN: 1476-4687. https://doi.org/10.1038/23220

Orr, G. W.; Barbour, L. J. & Atwood, J. L. (1999). "Controlling Molecular Self-Organization: Formation of Nanometer-Scale Spheres and Tubules," Science 285, 1049-1052, ISSN: 1095-9203. https://doi.org/10.1126/science.285.5430.1049

Liu, Z.; Zheng, D.; Su, Y.; Liu, Z. & Tong, Y. (2010). "Facile and Efficient Electrochemical Synthesis of Lanthanum Hydroxide Nanospindles and Nanorods," Electrochem. Solid- State Letters 13(12), E15-E18, ISSN: 1099-0062. https://doi.org/10.1149/1.3486446

Aghazadeh, M.; Arhami, B.; Barmi, A.-A. M.; Hosseinifard, M.; Gharailou, D. & Fathollahi, F. (2014). "La(OH)3 and La2O3 nanospindles prepared by template-free direct electrodeposition followed by heat-treatment," Mat. Lett. 115, 68-71, ISSN: 0167-577X. https://doi.org/10.1016/j.matlet.2013.10.002

Robinson, T.; McMullan, G.; Marchant, R. & Nigam, P. (2001). "Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative.," Biores. Technology 77(3), 247-255, ISSN 0960- 8524. https://doi.org/10.1016/S0960-8524(00)00080-8

Pearce, C. I.; Lloyd, J. R. & Guthrie, J. T. (2003). "The removal of colour from textile wastewater using whole bacterial cells: a review," Dyes and Pigments 58(3), 179-196, ISSN: 0143-7208. https://doi.org/10.1016/S0143-7208(03)00064-0

Ayed, L.; Chaieb, K.; Cheref, A. & Bakhrouf, A. (2009). "Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis," World J. Microbiology and Biotechnology 25, 705-711, ISSN: 1573-0972. https://doi.org/10.1007/s11274-008-9941-x

Konstantinou, I. K. & Albanis, T. A. (2004). "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review," Applied Catalysis B: Environmental 49(1), 1-14, ISSN: 0926-3373. https://doi.org/10.1016/j.apcatb.2003.11.010

H., Zollinger (Ed.) (2003). Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments (3rd revised ed.), Wiley-VCH, Weinheim, 637 p. ISBN: 3906390-23-3.

Akpan, U. G. & Hameed, B. H. (2009). "Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review," J. Haz. Mat. 170(2-3), pp. 520529, ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2009.05.039

Forgacs, E.; Cserháti, T. & Oros, G. (2004). "Removal of synthetic dyes from wastewaters: a review," Environment International 30, 953-971, ISSN: 0160-4120. https://doi.org/10.1016/j.envint.2004.02.001

He, Z.; Sun, C.; Yang, S.; Ding, Y.; He, H. & Wang, Z. (2009). " Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway," J. Haz. Mat. 162(2-3), pp. 1477-1486, ISSN: 0304-3894. https://doi.org/10.1016/j.jhazmat.2008.06.047

Li, L.; Dai, W. K.; Yu, P.; Zhao, J. & Qu, Y. B. J. (2009). "Decolorisation of synthetic dyes by crude laccase from Rigidoporus lignosus W1," J. Chemical Technology Biotechnlogy 84(3), 399-404, ISSN: 1097-4660. https://doi.org/10.1002/jctb.2053

Arslan, I. & Balcioglu, A. I. (2001). "Advanced oxidation of raw and biotreated textile industry wastewater with O3, H2O2 /UV-C and their sequential application," J. Chemical Technology Biotechnlogy 76(1), 53-60, ISSN: 1097-4660. https://doi.org/10.1002/1097-4660(200101)76:1<53::AID- JCTB346>3.0.CO;2-T

Dhir, A.; Prakash, N. T. & Sud, D. (2012). "Comparative studies on TiO2/ZnO photocatalyzed degradation of 4chlorocatechol and bleach mill effluents," Desalination and Water Treatment 46(1-3), 196-204, ISSN: 1944-3986. https://doi.org/10.1080/19443994.2012.677521

Ladanov, M.; Ram, M. K.; Matthews, G. & Kumar, A. (2011). "Structure and Opto-electrochemical Properties of ZnO Nanowires Grown on n-Si Substrate," Langmuir 27(14), 9012-9017, ISSN: 1520-5827. https://doi.org/10.1021/la200584j

Lin, D.; Wu, H.; Zhang, R. & Pan, W. (2009). "Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers," Chem. Mat. 21(15), 3479-3484, ISSN: 15205002. https://doi.org/10.1021/cm900225p

Evgenidou, E.; Fytianos, K. & Poulios, I. (2005). "Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts," Applied Catalysis B: Environmental 59(1-2), 81-89, ISSN: 0926-3373. https://doi.org/10.1016/j.apcatb.2005.01.005

Baruah, S.; Mahmood, M. A.; Myint, M. T. Z.; Bora, T. & Dutta, J. (2010). "Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods," Beilstein J. Nanotechnology. 1, 14-20, ISSN: 2190-4286. https://doi.org/10.3762/bjnano.1.3

Baruah, S.; Rafique, F. F. & Dutta, J. (2008). "Visible light photocatalysis by tailoring crystal defects in zinc oxide nanostructures," Nano 3(05), 399-407, ISSN: 1793-7094. https://doi.org/10.1142/S179329200800126X

Zhang, Y.; Ram, M. K.; Stefanakos, E. K. & Goswami, D. Y. (2012). "Synthesis, Characterization, and Applications of ZnO Nanowires," J. Nanomaterials. 2012, 624520, ISSN: 1687-4129. https://doi.org/10.1155/2012/624520

Hornyak, G. L.; Dutta, J.; Tibbals, H. & Rao, A. K., (Eds.) (2008). Introduction to Nanoscience, CRC Press, Boca Raton, 815 p. ISBN 978-1-4200-4805-6.

O'Regan, B. & Graetzel, M. (1991). "A low-cost, higheffic iency solar cell based on dye-sensitized colloidal titanium diox ide films," Nature 353 (6346), 737-740, ISSN: 1476- 4687. https://doi.org/10.1038/353737a0

Gratzel, M. (2001). "Photoelectrochemical cells," Nature 414 (6861), 338-344, ISSN: 1476-4687. https://doi.org/10.1038/35104607

Peter, L. M. (2007). "Characterization and Modeling of Dye- Sensitized Solar Cells," J. Physical Chemistry C 111(18), 6601-6612, ISSN: 1932-7455. https://doi.org/10.1021/jp069058b

Baxter, J. B. & Aydil, E. S. (2005). "Nanowire-based dye- sensitized solar cells," Appl. Phys. Lett. 86(5), 053114, ISSN: 1077-3118. https://doi.org/10.1063/1.1861510

Zhang, Q.; Dandeneau, C. S.; Zhou, X. & Cao, G. (2009). "ZnO Nanostructures for Dye-Sensitized Solar Cells," Advanced Materials 21(41), 4087-4108, ISSN: 1521-4095. https://doi.org/10.1002/adma.200803827

Nissfolk, J.; Fredin, K.; Hagfeldt, A. & Boschloo, G. (2006). "Recombination and Transport Processes in Dye-Sensitized Solar Cells Investigated under Working Conditions," J. Phys. Chem. B 110(36), 17715-17718, ISSN: 1520-5207. https://doi.org/10.1021/jp064046b

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R. & Yang, P. (2005). "Nanowire dye-sensitized solar cells," Nature Materials 4(6), 455-459, ISSN: 1476-4660. https://doi.org/10.1038/nmat1387

Martinson, A. B. F.; Elam, J. W.; Hupp, J. T. & Pellin, M. J. (2007). "ZnO Nanotube Based Dye-Sensitized Solar Cells," Nano Lett., 7(8), 2183-2187, ISSN: 1530-6992. https://doi.org/10.1021/nl070160

Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S.-J. & Morkoc, H. (2005). "A comprehensive review of ZnO materials and devices," J. Applied Physics 98(4), 041301, ISSN: 1089-7550. https://doi.org/10.1063/1.1992666

Yoon, H. S.; Kim, M. H. & Seongil, J. H. (2003). "Photodetecting properties of ZnO-based thin-film transistors Bae," Appl. Phys. Lett. 83(25), 5313-5315, ISSN: 1077-3118. https://doi.org/10.1063/1.1633676

Lee, C.-H.; Chiu, W.-H.; Lee, K.-M.; Yen, W.-H.; Lin, H.-F.; Hsieh, W.-F. & Wu, J.-M. (2010). "The influence of tetrapodlike ZnO morphology and electrolytes on energy conversion effic iency of dye-sensitized solar cells," Electrochimica Acta, 55(28), 8422-8429, ISSN: 0013-4686. https://doi.org/10.1016/j.electacta.2010.07.061

Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L. & Wang, J. X. (2007). "Improved dye-sensitized solar cells with a ZnOnanoflower photoanode," Appl. Phys. Lett. 90(26), 263501, ISSN: 1077-3118. https://doi.org/10.1063/1.2751588

Baxter, J. B. & Aydil, E. S. (2006). "Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires," Solar Energy Materials Solar Cells 90(5), 607-622, ISSN: 0927-0248. https://doi.org/10.1016/j.solmat.2005.05.010

Xu, F.; Dai, M.; Lu, Y. & Sun, L. (2010). "Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells," J. Physical Chemistry C 114(6), 2776-2782, ISSN: 1932-7455. https://doi.org/10.1021/jp910363w

Peulon, S. & Lincot, D. (1998). "Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions," J. Electrochem. Soc. 145(3), 864-874, ISSN: 1945-7111. https://doi.org/10.1149/1.1838359

Izaki, M. & Omi, T. (1996). "Transparent zinc oxide films prepared by electrochemical reaction," Appl. Phys. Lett. 68(17), 2439-2440, ISSN: 1077-3118. https://doi.org/10.1063/1.116160 150] Pauporte, Th. & Lincot, D. (2001). "Hydrogen peroxide oxygen precursor for zinc ox ide electrodeposition I. Deposition in perchlorate medium," J. Electrochem. Soc. 148(4), C310-C314, ISSN: 1945-7111. https://doi.org/10.1149/1.1357175

Pradhan, D. & Leung, K. T. (2008). "Controlled Growth of Two-Dimensional and One-Dimensional ZnO Nanostructures on Indium Tin Oxide Coated Glass by Direct Electrodeposition," Langmuir 24(17), 9707-9716, ISSN: 1520-5827. https://doi.org/10.1021/la8008943

Fujishima, A. & Honda, K. (1972). "Electrochemical photolysis of water at a semiconductor electrode ," Nature 238, 37-38, ISSN: 1476-4687. https://doi.org/10.1038/238037a0

Hashimoto, K.; Irie, H. & Jujishima, A. (2005). "TiO2 Photocatalysis: A Historical Overview and Future Prospects," Japanese J. Applied Physics 44(12), 8269-8285, ISSN: 1347-4065. https://doi.org/10.1143/JJAP.44.8269

Mor, G. K.; Shanker, K.; Paulose, M.; Varghese, O. K. & Grimes, C. A. (2005). "Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells," Nano Lett. 6(2), 215218, ISSN: 1530-6992. https://doi.org/10.1021/nl052099j

Roy, P. S. & Berger, P. S. (2011). "TiO2 nanotubes: Synthesis and applications," Angewandte Chemie International Edition 50(13), 2904-2939, ISSN: 1521-3773. https://doi.org/10.1002/anie.201001374

Zhang, X.; Yao, B.; Zhao, L.; Liang, C.; Zhang, L. & Mao, Y. (2001). "Electrochemical Fabrication of Single-Crystalline Anatase TiO2 Nanowire Arrays," J. Electrochem. Soc. 148(7), G398-G400, ISSN: 1945-7111. https://doi.org/10.1149/1.1378293

Natarajan, C. & Nogami, G. (1996). "Cathodic Electrodeposition of Nanocrystalline Titanium Dioxide Thin Films," J. Electrochem. Soc. 143(5), 1547-1550, ISSN: 19457111. https://doi.org/10.1149/1.1836677

Karuppuchamy, S.; Nonomura, K.; Yoshida, T.; Sugiura, T. & Minoura, H., (2002). "Cathodic electrodeposition of oxide semiconductor thin films and their application to dye- sensitized solar cells," Solid State Ionics 151, 19-27, ISSN: 1872-7689. https://doi.org/10.1016/S0167-2738(02)00599-4

Chen, Y.; Kim, H. C.; McVittie, J.; Ting, C. & Nishi, Y. (2010). "Synthesis of TiO(2) nanoframe and the prototype of a nanoframe solar cell," Nanotechnology 21(18), 185303, ISSN: 1361-6528. https://doi.org/10.1088/0957-4484/21/18/185303

Teo, G. Y.; Ryan, M. P. & Riley, D. J. (2014). "A mechanistic study on templated electrodeposition of one-dimensional TiO2 nanorods and nanotubes using TiOSO4 as a precursor," Electrochemistry Communications 47, 13-16, ISSN: 1388-2481. https://doi.org/10.1016/j.elecom.2014.07.011

Downloads

Published

2022-12-28

How to Cite

Sousa Neto, V. de O. ., Saraiva, G. D. ., de Castro, A. J. R. ., Cavalcante Freire, P. de T. ., & do Nascimento, R. F. . (2022). Electrodeposition of One-Dimensional Nanostructures: Environmentally Friendly Method. Journal of Composites and Biodegradable Polymers, 10, 19–42. https://doi.org/10.12974/2311-8717.2022.10.03

Issue

Section

Articles