Relaxation Processes and Polymeric Chain Interpenetration in a PMMA-Cz/ MEH-PPV Blend Studied by Fluorescence Spectroscopy
DOI:
https://doi.org/10.12974/2311-8717.2013.01.01.8Keywords:
carbazole, FRET, MEH-PPV, chain interpenetration, PMMA, relaxation processes.Abstract
Miscibility and energy transfer processes of a blend containing 0.1 % of Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) in a matrix of poly(methyl-methacrylate) containing 1% of attached carbazolyl groups (PMMA-Cz) were studied by fluorescence spectroscopy and microscopy techniques. From SEM micrographs, a uniform surface is found. The images on the cryogenic fracture of the blend does not show domains, although from fluorescence optical microscopy domains of MEH-PPV of about 30 mm in the PMMA-Cz matrix were observed, indicating the immiscibility of the blend components. By steady-state and time-resolved fluorescence spectroscopies measured at room temperature and at 77 K, it was found that there is an important non-radiative energy transfer occurring by Forster mechanism and due to that, there must be an interpenetration degree between polymeric chains specially at room temperature, which is evidence for miscibility. This can be inferred also by temperature-dependent fluorescence spectroscopy, which informs about relaxation processes occurring in the blend and also reveals the occurrence of an interface effect that is characteristic of miscible components.
References
Liu LJ, van Bavel S, Wen SP, Yang X, Loos J. Morphology and performance of poly(2-methoxy-5-(20-ethyl-hexyloxy)-pphenylenevinylene)( MEH-PPV):(6,6)-phenyl-C61-butyric acid methyl ester (PCBM) based polymer solar cells. Chinese J Chem 2013; 31(6): 731-5. http://dx.doi.org/10.1002/cjoc.201300135
Wu CS, Liu CT, Chen Y. Multifunctional copolyfluorene containing pendant benzimidazolyl groups: applications in chemical sensors and electroluminescent devices. Polym Chem 2012; 3(12): 3308-9. http://dx.doi.org/10.1039/c2py20506h
Parashchuk OD, Grigorian S, Levin EE, Bruevich VV, Bukunov K, Golovnin IV, Dittrich T, Dembo KA, Volkov VV, Paraschuk DY. Acceptor-Enhanced Local Order in Conjugated Polymer Films. J Phys Chem Lett 2013; 4(8): 1298-5. http://dx.doi.org/10.1021/jz400333k
Yang X, Wang RZ, Wang YC, Sheng CX, Li H, Hong W, Tang WH, Tian CS, Chen Q. Long lived photoexcitation dynamics in pi-conjugated polymer and fullerene blended films. Org Electron 2013; 14(8): 2058-6. http://dx.doi.org/10.1016/j.orgel.2013.04.043
Sosorev AY, Parashchuk, OD, Zapunidi SA, Kashtanov GS, Paraschuk DY. lntrachain Aggregation of Charge-Transfer Complexes in Conjugated Polymer:Acceptor Blends from Photoluminescence Quenching; J Phys Chem C 2013; 117(14): 6972-6. http://dx.doi.org/10.1021/jp4000158
Balderas U, Falcony C, Moggio I, Arias E, Mondragón M, A photoluminescence study of electrospun fibers of conjugated poly[2-methoxy-5-(20-ethylhexyloxy)-1,4-phenylenevinylene] blended with poly(9-vinylcarbazole). Polym 2013; 54: 2062 – 4. http://dx.doi.org/10.1016/j.polymer.2013.02.015
Nicholson PG, Castro FA. Organic photovoltaics: principles and techniques for nanometre scale characterization. Nanotechnology 2010; 21(49): 492001. http://dx.doi.org/10.1088/0957-4484/21/49/492001
Peumans P, Yakimov A, Forrest SR, Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 2003; 93(7): 3693–30. http://dx.doi.org/10.1063/1.1534621
Martins TD, Weiss RG, Atvars TDZ. Synthesis and photophysical properties of a poly(methyl methacrylate) polymer with carbazolyl side groups. J Braz Chem Soc 2008; 19: 1450–14. http://dx.doi.org/10.1590/S0103-50532008000800003
Atvars TDZ, Talhavini M. Modifications in a spectrofluorometer for usage dedicated to polymer relaxation analysis. Quim. Nova 1991; 18: 298-3.
Hoegl H. Photoelectric Effect in Polymers and Their Senstization by dopants. J Phys Chem 1965; 69: 755-11. http://dx.doi.org/10.1021/j100887a008
Klopffer W. Luminescence of poly(n-vinyl-carbazole) films at 77K .2. kinetic-model of exciton trapping and annihilation. Chem Phys 1981; 57(1-2): 75-13. http://dx.doi.org/10.1016/0301-0104(81)80022-5
Ng D, Guillet JE. Interpretation of the excimer kinetics of poly(nvinylcarbazo le)and 1,3-dicarbazolylpropane in dilute solutions. Macromolecules 1981; 14(2): 405-5. http://dx.doi.org/10.1021/ma50003a033
Somersall AC, Guillet EJ. Triplet-triplet annihilation and excimer fluorescence in poly(naphthyl methacrylate). Macromol 1973; 6(2): 218-5. http://dx.doi.org/10.1021/ma60032a013
Soutar I, Swanson L, Davidson K, Yin J. Photophysics of carbazole-containing systems. 2. fluorescence behaviour of poly(n-vinyl carbazole) and n-vinyl carbazole/ methyl acrylate copolymer films, High Perform Polym 1997; 9: 353-15. http://dx.doi.org/10.1088/0954-0083/9/4/001
Sakai H, Itaya A, Masuhara H, Sasaki K, Kawata S. Fluorescence dynamics of poly(n-vinylcarbazole) in fluid solution. multivariate analysis of time-resolved fluorescence spectra. Chem Phys Lett 1993; 208(3-4): 283-7. http://dx.doi.org/10.1016/0009-2614(93)89076-T
Skilton PF, Ghiggino KP. Temperature-dependence of excimer formation in n-vinyl carbazole polymers, polymer photochem. Polym Photochem 1984; 5: 179-12. http://dx.doi.org/10.1016/0144-2880(84)90031-9
Roberts AJ, Cureton CG, Philips D. Time-resolved emission studies of poly(n-vinyl carbazole) using pulsed laser excitation. Chem Phys Lett 1980; 72(3): 554-3. http://dx.doi.org/10.1016/0009-2614(80)80352-6
Johnson GE. Emission properties of vinylcarbazole polymers. J Chem Phys 1975; 62(12): 4697–9. http://dx.doi.org/10.1063/1.430418
Roberts A J, Phillips D, Abdul-Rasoul FAM, Ladwith A. Temperature dependence of excimer formation and dissociation in poly(N-vinylcarbazole). J Chem Soc Faraday Trans I 1981; 77: 2725-12. http://dx.doi.org/10.1039/f19817702725
Gallego J, Mendicuti F, Mattice W. Energy migration in poly(n-vinyl carbazole) and its copolymers with methyl methacrylate: fluorescence polarization, quenching and molecular dynamics. J Polym Sci Part B: Polym Phys 2003; 41: 1615-12. http://dx.doi.org/10.1002/polb.10508
Buchberger EM, Mollay B, Weixelbaumer WD, Kauffmann HF. Excited state relaxation in bichromophoric rotors: timeresolved fluorescence of 1,3-di (n-carbazolyl) propane: a three-state analysis. J Chem Phys 1988; 89(2): 635-18. http://dx.doi.org/10.1063/1.455239
Itagaki H, Obukata N, Okamoto A, Horie K, Mita I. Kinetic studies on the formation of two intramolecular excimers in substituted dinaphthylpropanes. J Am Chem Soc 1982; 104: 4469-9. http://dx.doi.org/10.1021/ja00380a024
Tagawa S, Washio M, Tabata Y. Picosecond time-resolved fluorescence studies of poly(n-vinylcarbazole) using a pulseradiolysistechnique. Chem Phys Lett 1979; 68(2-3): 276-6. http://dx.doi.org/10.1016/0009-2614(79)87200-0
Giro G, Orlandi G. Temperature-dependence of the fluorescence-spectra of poly-n-vinylcarbazole films from 300- K to 550-K - evidence for monomer emission. Chem Phys 1992; 160: 145-6. http://dx.doi.org/10.1016/0301-0104(92)87097-S
Solaro R, Galli G, Masi F, Ledwith A, Chellini E. Synthesis, stereochemistry and fluorescence properties of polystyrenes having carbazole substituents. Eur Polym J 1983; 19(5): 433- 6. http://dx.doi.org/10.1016/0014-3057(83)90119-2
Bonesi SM, Erra-Balselis R. Electronic spectroscopy of carbazole andnandc- substituted carbazoles in homogeneous media and in solid matrix. J Lumin 2001; 93: 51-24. http://dx.doi.org/10.1016/S0022-2313(01)00173-9
Bree A, Zwarich R. Vibrational assignment of carbazole from infrared, raman, and fluorescence spectra. J Chem Phys 1968; 49(8): 3344-12. http://dx.doi.org/10.1063/1.1670606
Belletète M, Bouchard J, Leclerc M, Durocher G. Photophysics and solvent-induced aggregation of 2,7- carbazole-based conjugated polymers. Macromolecules 2005; 38: 880-7. http://dx.doi.org/10.1021/ma048202t
Cossiello RFC, Kowalski E, Rodrigues PC, Akcelrud L, Bloise AC, DeAzevedo ER, Bonagamba TJ, Atvars TDZ. Photoluminescence and relaxation processes in MEH-PPV. Macromolecules 2005; 38(3): 925-8. http://dx.doi.org/10.1021/ma048340i
Cossiello RF, Susman MD, Aramendia PF, Atvars TDZ. Study of solvent-conjugated polymer interactions by polarized spectroscopy: MEH–PPV and Poly(9,9- dioctylfluorene-2,7-diyl). J Lumin 2010; 130: 415-9. http://dx.doi.org/10.1016/j.jlumin.2009.10.006
Becker-Guedes F, deAzevedo ER, Bonagamba TJ, Schmidt- Rohr K. Solid-state exchange nmr characterization of segmental dynamics in glassy poly(alkyl methacrylate)s Appl Mag Res 2004; 27 (3-4): 383-8.
Christoff M, Atvars TDZ. Phosphorescent probes in studies of secondary relaxation of amorphous polystyrene and poly(nalkyl methacrylate)s. Macromolecules 1999; 32: 6093-9. http://dx.doi.org/10.1021/ma990008x
De Deus JF, Souza GP, Corradini WA, Atvars TDZ, Akcelrud L. Photo and electroluminescence studies of poly(methyl methacrylate-co-9-anthryl methyl methacrylate). Macromolecules 2004; 37: 6938-6. http://dx.doi.org/10.1021/ma049941c
Hejboer J, Baas MA, Van de Graaf B, Hoefnagel MA. A molecular mechanics study on rotational motions of side groups in poly(methyl methacrylate)Polymer, 1987, 28: 509- 5. http://dx.doi.org/10.1016/0032-3861(87)90207-2
Williams J, Eisenberg A. Methyl-group tunneling and viscoelastic relaxation in poly(methyl methacrylate), Macromolecules 1978; 11: 700-8. http://dx.doi.org/10.1021/ma60064a017
Tanabe Y, Hirose J, Okano K, Wada Y. Methyl Group Relaxations in the Glassy Phase of Polymers. Polym J 1970; 1: 107-9. http://dx.doi.org/10.1295/polymj.1.107
Baas JMA, Graaf VB, J. Heijboer J. A molecular mechanics investigation into the mechanism of the low temperature relaxations of three poly(alkyl methacrylates). Polymer 1991; 32: 2141-5. http://dx.doi.org/10.1016/0032-3861(91)90037-J
Amparo G, Soria V, Figueruelo JB, Calleja RD. dielectric and dynamic-mechanical relaxations in methyl methacrylate and methyl isopropenyl ketone copolymers. Polymer 1988; 29: 981-6. http://dx.doi.org/10.1016/0032-3861(88)90004-3
Deutsch H, Hoff EA, Reddish W. Relation between the structure of polymers and their dynamic mechanical and electrical properties. part I. some alpha-substituted acrylic ester polymers. J Polym Sci 1954; 13: 565-18. http://dx.doi.org/10.1002/pol.1954.120137205
Hyde PD, Evert TE, Cicerone MT, Ediger MD, Rotational motion of molecular probes in ortho-terphenyl and cispolyisoprene J Non-Cryst Solids 1991; 42: 131-17.
Ehlich D, Sillescu H. Tracer diffusion at the glass transition. Macromolecules 1990; 23: 1600-11. http://dx.doi.org/10.1021/ma00208a008
Iyengar N, Harrison B, Duran RS, Schanze KS, Reynolds JR. Morphology evolution in nanoscale light-emitting domains in mehppv/pmma blends. Marcomolecules 2003; 36: 8978-8. http://dx.doi.org/10.1021/ma034908w
Davidson K, Soutar I, Swanson L, Yin J. Photophysics of carbazole-containing systems. 1. Dilute solution behavior of poly(n-vinyl carbazole) and n-vinylcarbazole/ methyl acrylate copolymers. J Polym Phys 1997; 35: 963-15. http://dx.doi.org/10.1002/(SICI)1099- 0488(19970430)35:6<963::AID-POLB11>3.0.CO;2-D
Itaya A, Okamoto K, Kusabayashi S. Emission spectra of the vinyl polymers with pendant carbazolyl groups. Bull Chem Soc Jpn 1976; 49: 2082-7. http://dx.doi.org/10.1246/bcsj.49.2082
Förster T. 10th Spiers Memorial Lecture, Transfer Mechanism Of Electronic Excitation. Discuss Faraday Soc 1959; 27: 7-11. http://dx.doi.org/10.1039/df9592700007
Campbell IH, Smith DL. Consistent time of flight mobility measurements and polymer light-emitting diode currentvoltage characteristics. Appl Phys Lett 1999; 74: 2809-3. http://dx.doi.org/10.1063/1.124021
Cariou JM, Dugas J, Martins L, Michel P. Refractive-index variations with temperature of PMMA and polycarbonate. Appl Opt 1986; 25(3): 334-3. http://dx.doi.org/10.1364/AO.25.000334
Singh S. Refractive index measurement and its applications. Phys Script 2002; 65: 167-4. http://dx.doi.org/10.1238/Physica.Regular.065a00167