Electrospun Fibers in Composite Materials for Medical Applications
DOI:
https://doi.org/10.12974/2311-8717.2013.01.01.7Keywords:
Bioelectronics, composite materials, drug delivery systems, electrospun fibers, tissue engineering.Abstract
The development of nanoscaled materials has deserved a remarkable interest for biomedical applications. Biological tissues are essentially composite materials with particular mechanical properties that should be carefully considered during the design of innovative biomedical scaffolds. Electrospun membranes are often found in medical applications due to its high specific surface which creates a 3D porous structure that mimics the native extracellular matrix. These electrospun membranes can also be designed to have enhanced mechanical properties, biocompatibility and cellular response making them appealing and inspiring to be used in composites materials.
This paper reviews the new insights in the development of advanced nanostructured composites materials based on electrospun fibers. From tissue engineering to bioelectronics, these composite materials can be found in the most promising research developments for the medical applications.
References
Shi J, Votruba AR, Farokhzad OC and Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010; 10 (9): 3223- 30. http://dx.doi.org/10.1021/nl102184c
Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem. 2007; 53 (11): 2002-9. http://dx.doi.org/10.1373/clinchem.2007.090795
Baptista A, Soares P, Ferreira I and Borges JP. Nanofibers and nanoparticles in biomedical applications. In: Tiwari A, Tiwari A, editors. Bioengineered Nanomaterials USA: CRC Press (Taylor & Francis Group); 2013
Harfenist SA, Cambron SD, Nelson EW, Berry SM, Isham AW, Crain MM, et al. Direct Drawing of Suspended Filamentary Micro- and Nanostructures from Liquid Polymers. Nano Lett. 2004; 4 (10): 1931-37. http://dx.doi.org/10.1021/nl048919u
Zhang Y, Lim CT, Ramakrishna S and Huang Z-M. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci-Mater M. 2005; 16: 933–46. http://dx.doi.org/10.1007/s10856-005-4428-x
Che G, Lakshmi BB, Martin CR and Fisher ER. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater. 1998; 10: 260-67. http://dx.doi.org/10.1021/cm970412f
Hwang W, Kim BH, Dandu R, Cappello J, Ghandehari H and Seog J. Surface Induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer. Langmuir. 2009; 25 (21): 12682-6. http://dx.doi.org/10.1021/la9015993
Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z and Ramaseshan R. Electrospun nanofibers: solving global issues. Mater Today. 2006; 9 (3): 40-50. http://dx.doi.org/10.1016/s1369-7021(06)71389-x
Yang F, Murugan R, Wang S and Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005; 26 (15): 2603-10. http://dx.doi.org/10.1016/j.biomaterials.2004.06.051
Zhuo H, Hu J, Chen S and Yeung L. Preparation of polyurethane nanofibers by electrospinning. J of Appl Polym Sci. 2008; 109 (1): 406-11. http://dx.doi.org/10.1002/app.28067
Min B-M, Lee G, Kim SH, Nam YS, Lee TS and Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004; 25 (7-8): 1289-97. http://dx.doi.org/10.1016/j.biomaterials.2003.08.045
Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, et al. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials. 2006; 27 (5): 724-34. http://dx.doi.org/10.1016/j.biomaterials.2005.06.024
Canejo JP, Borges JP, Godinho MH, Brogueira P, Teixeira PIC and Terentjev EM. Helical Twisting of Electrospun Liquid Crystalline Cellulose Micro- and Nanofibers. Adv Mater. 2008; 20 (24): 4821-25. http://dx.doi.org/10.1002/adma.200801008
Kim C-W, Kim D-S, Kang S-Y, Marquez M and Joo YL. Structural studies of electrospun cellulose nanofibers. Polymer. 2006; 47 (14): 5097-107. http://dx.doi.org/10.1016/j.polymer.2006.05.033
Vaz CM, van Tuijl S, Bouten CV and Baaijens FP. Design of scaffolds for blood vessel tissue engineering using a multilayering electrospinning technique. Acta Biomater. 2005; 1 (5): 575-82. http://dx.doi.org/10.1016/j.actbio.2005.06.006
Franco PQ, João CFC, Silva JC and Borges JP. Electrospun hydroxyapatite fibers from a simple sol–gel system. Mater Lett. 2012; 67 (1): 233-36. http://dx.doi.org/10.1016/j.matlet.2011.09.090
Lee SJ, Tatavarty R and Gu MB. Electrospun polystyrenepoly( styrene-co-maleic anhydride) nanofiber as a new aptasensor platform. Biosens Bioelectron. 2012; 38 (1): 302- 7. http://dx.doi.org/10.1016/j.bios.2012.06.009
Miao J, Pangule RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, et al. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials. 2011; 32 (36): 9557-67. http://dx.doi.org/10.1016/j.biomaterials.2011.08.080
Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res. 2011; 28 (6): 1259-72. http://dx.doi.org/10.1007/s11095-010-0320-6
Pant HR, Pant B, Pokharel P, Kim HJ, Tijing LD, Park CH, et al. Photocatalytic TiO2–RGO/nylon-6 spider-wave-like nanonets via electrospinning and hydrothermal treatment. J Membrane Sci. 2013; 429: 225-34. http://dx.doi.org/10.1016/j.memsci.2012.11.025
Li X, Gao C, Wang J, Lu B, Chen W, Song J, et al. TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells. J Power Sources. 2012; 214: 244-50. http://dx.doi.org/10.1016/j.jpowsour.2012.04.042
Baptista A, Ferreira I and Borges JP. Cellulose-based composite systems for biomedical applications. In: Thakur VK, Singha AS, editors. Biomass based Biocomposites. U.K.: Smithers Rapra Technology 2013. p. 47-60
Agarwal S, Wendorff JH and Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008; 49 (26): 5603-21. http://dx.doi.org/10.1016/j.polymer.2008.09.014
Lee SJ, Liu J, Oh SH, Soker S, Atala A and Yoo JJ. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 2008; 29 (19): 2891-8. http://dx.doi.org/10.1016/j.biomaterials.2008.03.032
Smith MJ, McClure MJ, Sell SA, Barnes CP, Walpoth BH, Simpson DG, et al. Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study. Acta Biomater. 2008; 4 (1): 58-66. http://dx.doi.org/10.1016/j.actbio.2007.08.001
Zhang H, Jia X, Han F, Zhao J, Zhao Y, Fan Y, et al. Dualdelivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials. 2013; 34 (9): 2202-12. http://dx.doi.org/10.1016/j.biomaterials.2012.12.005
Prabhakaran MP, Venugopal J and Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 2009; 5 (8): 2884-93. http://dx.doi.org/10.1016/j.actbio.2009.05.007
Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z, et al. Incorporation of stromal cell-derived factor-1alpha in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials. 2013; 34 (3): 735-45. http://dx.doi.org/10.1016/j.biomaterials.2012.10.016
Choi JS, Lee SJ, Christ GJ, Atala A and Yoo JJ. The influence of electrospun aligned poly(epsiloncaprolactone)/ collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials. 2008; 29 (19): 2899-906. http://dx.doi.org/10.1016/j.biomaterials.2008.03.031
Ladd MR, Lee SJ, Stitzel JD, Atala A and Yoo JJ. Coelectrospun dual scaffolding system with potential for muscletendon junction tissue engineering. Biomaterials. 2011; 32 (6): 1549-59. http://dx.doi.org/10.1016/j.biomaterials.2010.10.038
Sell SA, McClure MJ, Garg K, Wolfe PS and Bowlin GL. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev. 2009; 61 (12): 1007-19. http://dx.doi.org/10.1016/j.addr.2009.07.012
Dorafshar AH, Angle N, Bryer-Ash M, Huang D, Farooq MM, Gelabert HA, et al. Vascular endothelial growth factor inhibits mitogen-induced vascular smooth muscle cell proliferation. J Surg Res. 2003; 114 (2): 179-86. http://dx.doi.org/10.1016/s0022-4804(03)00254-3
Yoshikawa Y and Abrahamsson S-O. Dose-related cellular effects of platelet-derived growth factor-BB differ in various types of rabbit tendons in vitro. Acta Orthop Scand. 2001; 72 (3): 287–92. http://dx.doi.org/10.1080/00016470152846646
Gentile P, Chiono V, Tonda-Turo C, Ferreira AM and Ciardelli G. Polymeric membranes for guided bone regeneration. Biotechnol J. 2011; 6 (10): 1187-97. http://dx.doi.org/10.1002/biot.201100294
Fong EL, Chan CK and Goodman SB. Stem cell homing in musculoskeletal injury. Biomaterials. 2011; 32 (2): 395-409. http://dx.doi.org/10.1016/j.biomaterials.2010.08.101
Liu ZJ, Zhuge Y and Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 2009; 106 (6): 984-91. http://dx.doi.org/10.1002/jcb.22091
Yang PJ and Temenoff JS. Engineering Orthopedic Tissue Interfaces. Tissue Eng PT B. 2009; 15 (2): 127-41. http://dx.doi.org/10.1089=ten.teb.2008.0371
Yu D-G. Electrospun nanofiber-based drug delivery systems. Health. 2009; 01 (02): 67-75. http://dx.doi.org/10.4236/health.2009.12012
Choi JS, Leong KW and Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials. 2008; 29 (5): 587-96. http://dx.doi.org/10.1016/j.biomaterials.2007.10.012
Peng H, Zhou S, Guo T, Li Y, Li X, Wang J, et al. In vitro degradation and release profiles for electrospun polymeric fibers containing paracetanol. Colloids Surf B Biointerfaces. 2008; 66 (2): 206-12. http://dx.doi.org/10.1016/j.colsurfb.2008.06.021
He C-L, Huang Z-M, Han X-J, Liu L, Zhang H-S and Chen LS. Coaxial Electrospun Poly(L????Lactic Acid) Ultrafine Fibers for Sustained Drug Delivery. Journal of Macromolecular Science, Part B: Physics. 2006; 45 (4): 515-24. http://dx.doi.org/10.1080/00222340600769832
Xu X, Zhuang X, Chen X, Wang X, Yang L and Jing X. Preparation of Core-Sheath Composite Nanofibers by Emulsion Electrospinning. Macromol Rapid Comm. 2006; 27 (19): 1637-42. http://dx.doi.org/10.1002/marc.200600384
Wei K, Li Y, Mugishima H, Teramoto A and Abe K. Fabrication of core-sheath structured fibers for model drug release and tissue engineering by emulsion electrospinning. Biotechnol J. 2012; 7 (5): 677-85. http://dx.doi.org/10.1002/biot.201000473
Baptista A, Ferreira I and Borges JB. Cellulose-based bioelectronic devices. In: van de Ven T, Godbout L, editors. Cellulose - Medical, Pharmaceutical and Electronic Applications: InTech; 2013
Katz E, Buckmann AF and Willner I. Self-powered enzymebased biosensors. J Am Soc. 2001; 123: 10752-53. http://dx.doi.org/10.1021/ja0167102
Tersch C and Lisdat F. Label-free detection of protein–DNA interactions using electrochemical impedance spectroscopy. Electrochimica Acta. 2011; 56 (22): 7673-79. http://dx.doi.org/10.1016/j.electacta.2011.06.063
Fang X, Tan OK, Tse MS and Ooi EE. A label-free immunosensor for diagnosis of Dengue infection with simple electrical measurements. Biosens Bioelectron. 2010; 25 (5): 1137-42. http://dx.doi.org/10.1016/j.bios.2009.09.037
Osman MH, Shah AA and Walsh FC. Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells. Biosens Bioelectron. 2011; 26 (7): 3087-102. http://dx.doi.org/10.1016/j.bios.2011.01.004
Malhotra BD and Chaubey A. Biosensors for clinical diagnostics industry. Sensors and Actuat B -Chem. 2003; 91 (1-3): 117-27. http://dx.doi.org/10.1016/s0925-4005(03)00075-3
Tang H, Yan F, Tai Q and Chan HL. The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. Biosens Bioelectron. 2010; 25 (7): 1646-51. http://dx.doi.org/10.1016/j.bios.2009.11.027
Zhao M, Huang J, Zhou Y, Chen Q, Pan X, He H, et al. A single mesoporous ZnO/Chitosan hybrid nanostructure for a novel free nanoprobe type biosensor. Biosens Bioelectron. 2013; 43: 226-30. http://dx.doi.org/10.1016/j.bios.2012.11.041
Harb A. Energy harvesting: State-of-the-art. Renewable Energy. 2011; 36 (10): 2641-54. http://dx.doi.org/10.1016/j.renene.2010.06.014
Bouendeu E, Greiner A, J.Smith C and Korvink JG. A Low- Cost Electromagnetic Generator for Vibration Energy Harvesting. IEEE Sens J. 2011; 11 (1): 107-13. http://dx.doi.org/10.1109/JSEN.2010.2050310
Xu S, Qin Y, Xu C, Wei Y, Yang R and Wang ZL. Selfpowered nanowire devices. Nature Nanotechnology. 2010; 5: 366-73. http://dx.doi.org/10.1038/nnano.2010.46
Sun C, Shi J, Bayerl DJ and Wang X. PVDF microbelts for harvesting energy from respiration. Energ Environ Sci. 2011; 4 (11): 4508. http://dx.doi.org/10.1039/c1ee02241e
Bhatia D, Bairagi S, Goel S and Jangra M. Pacemakers charging using body energy. J Pharm Bioallied Sci. 2010; 2 (1): 51-4. http://dx.doi.org/10.4103/0975-7406.62713
Baptista AC, Martins JI, Fortunato E, Martins R, Borges JP and Ferreira I. Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosens Bioelectron. 2011; 26 (5): 2742-5. http://dx.doi.org/10.1016/j.bios.2010.09.055