Synthesis and Characterization of Polystyrene Composites with Oxidized and Ethylbenzene Functionalized Multiwall Carbon Nanotubes
DOI:
https://doi.org/10.12974/2311-8717.2013.01.01.4Keywords:
Contact angle, dispersibility, loss factor, storage module, thermal stability.Abstract
Polystyrene nanocomposite materials prepared with differently functionalized multiwall carbon nanotubes (CNT) as nanofillers were investigated. Two types of functionalized multiwall carbon nanotubes were used: oxidized (CNT-COOH) and their ester analogue with ethylbenzene groups (CNT-COOEtBz) introduced by further functionalization of the fore. The functionalized nanotubes were examined by thermogravimetric analysis and contact angle method that both revealed differences between them. Also, their dispersion was investigated in polar methanol and non-polar toluene with the assistance of UV-Vis spectrophotometer. Good dispersion of CNT-COOH in methanol and CNT-COOEtBz in toluene is in accordance with polarity introduced on the surfaces of carbon nanotubes. Mixtures of styrene monomer and 1 wt. % of CNT-COOH or CNT-COOEtBz in toluene were reacted in a radical in-situ polymerization reaction in order to prepare corresponding nanocomposites. Prior to the reaction nanotubes were dispersed by sonication of the reaction mixture. The synthesized composites were characterized by the SEC, TGA, DSC, DMA, SEM and contact angle method. The DSC measurements show a significant Tg shift towards lower temperature since Tg of studied PS is around 60 °C and Tg of PS composites with CNT-COOH at 35 °C and CNT-COOEtBz at 33 °C. The storage modulus increase in the PS/CNT-COOEtBz composite can be assigned to a larger similarity of matrix and filler structure. This is corroborated with the SEM micrographs where much lesser extent of agglomeration can be seen.
References
Wang Q, Chen G, Alghamdi AS. Influence of nanofillers on electrical characteristics of epoxy resins insulation. In: 2010 IEEE International Conference on Solid Dielectrics, Potsdam, Germany, 4 - 9 Jul 2010. IEEE: 263-6.
Singha S, Thomas MJ, Dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 2008; 15(1): 12-23. http://dx.doi.org/10.1109/T-DEI.2008.4446732
Wang Q, Chen G. Effect of nanofillers on the dielectric properties of epoxy nanocomposites. Adv Mater Res 2012; 1(1): 93-107. http://dx.doi.org/10.12989/amr.2012.1.1.093
Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos A 2005; 36: 1555- 61. http://dx.doi.org/10.1016/j.compositesa.2005.02.006
Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 1994; 265: 1212-4. http://dx.doi.org/10.1126/science.265.5176.1212
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56-58. http://dx.doi.org/10.1038/354056a0
Seo MK, Park SJ. Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 2004; 395: 44-8. http://dx.doi.org/10.1016/j.cplett.2004.07.047
Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science 2001; 294: 1317- 20. http://dx.doi.org/10.1126/science.1065824
Gojny FH, Wichmann MHG, Fiedler B, Schulte K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study. Compos Sci Technol 2005; 65: 2300-13. http://dx.doi.org/10.1016/j.compscitech.2005.04.021
Kasumov AY, Deblock R, Kociak M, Reulet B, Bouchiat H, Khodos I, et al. Supercurrents through single-walled carbon nanotubes. Science 1999; 284:1508-11. http://dx.doi.org/10.1126/science.284.5419.1508
Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, et al. Carbon nanotube actuators. Science 1999; 284: 1340-4. http://dx.doi.org/10.1126/science.284.5418.1340
Niu C, Sichel EK, Hoch R, Moy D, Tennet H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 1997; 70: 1480-2. http://dx.doi.org/10.1063/1.118568
Holzinger M, Abraham J, Whelan P, Graupner R, Ley, L, Hennrich F, et al. Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes. J Am Chem Soc 2003; 125: 8566-80. http://dx.doi.org/10.1021/ja029931w
Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M. Amino acid functionalisation of water soluble carbon nanotube. Chem Commun 2002; 24: 3050 -1. http://dx.doi.org/10.1039/b209843a
O’Connell M J, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, et al. Reversible water-solubilization of singlewalled carbon nanotubes by polymer wrapping. Chem Phys Lett 2001; 342(3-4): 265-71. http://dx.doi.org/10.1016/S0009-2614(01)00490-0
Kim OK, Je J, Baldwin JW, Kooi S, Phehrsson PE, Buckley LJ. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc 2003; 125(15): 4426-7. http://dx.doi.org/10.1021/ja029233b
Liu J, Rinzler AG, Dai H, Hafner JH, Tradley RK, Boul PJ, et al. Fullerene Pipes. Science 1998; 280: 1253-6. http://dx.doi.org/10.1126/science.280.5367.1253
Novais RM, Simon F, Pötschke P, Villmow T, Covas JA, Paiva MC. Poly(lactic acid) composites with poly(lactic acid)- modified carbon nanotubes. J Polym Sci A: Polym Chem 2013; 51: 3740-50. http://dx.doi.org/10.1002/pola.26778
Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 2003; 3: 1379- 82. http://dx.doi.org/10.1021/nl034524j
Zhang X, Sreekumar TV, Liu T, Kumar S. Properties and structure of nitric acid oxidized single wall carbon nanotube films. J Phys Chem B 2004; 108: 16435-40. http://dx.doi.org/10.1021/jp0475988
Wu HX, Qiu XQ, Cao WM, Lin YH, Cai RF, Qian SX. Polymer-wrapped multiwalled carbon nanotubes synthesized via microwave assisted in situ emulsion polymerization and their optical limiting properties. Carbon 2007; 45: 2866-72. http://dx.doi.org/10.1016/j.carbon.2007.10.009
Xu D, Liu H, Yang L, Wang Z. Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes. Carbon 2006; 44: 3226-31. http://dx.doi.org/10.1016/j.carbon.2006.06.030
Alvaro M, Atienzar P, de la Cruz P, Delgado JL, Garcia H, Langa F. Synthesis and photochemistry of soluble, pentyl ester-modified single wall carbon nanotube. Chem Phys Letters 2004; 386(4-6): 342-5. http://dx.doi.org/10.1016/j.cplett.2004.01.087
Yun S, Im H, Heo Y, Kim J, Crosslinked sulfonated poly(vinyl alcohol)/sulfonated multi-walled carbon nanotubes nanocomposite membranes for direct methanol fuel cells. J Membr Sci 2011; 380(1-2): 208-15. http://dx.doi.org/10.1016/j.memsci.2011.07.010
Hill DE, Lin Y, Rao AM, Allard LF, Sun YP. Functionalization of carbon nanotubes with polystyrene. Macromolecules 2002; 35: 9466-71. http://dx.doi.org/10.1021/ma020855r
Baskaran D, Mays JW, Bratcher MS. Polymer adsorption in the grafting reactions of hydroxyl terminal polymers with multi-walled carbon nanotubes. Polymer 2005; 46: 5050-7. http://dx.doi.org/10.1016/j.polymer.2005.04.012
Faraguna F, Peter R, Volov????ek V, Juki???? A. Surface modification of multiwall carbon nanotubes by esterification reaction with methanol, butanol and dodecanol. J Nanosci Nanotechnol 2014; 14: 1-8.
Hennrich F, Lebedkin S, Malik S, Tracy J, Barczewski M, Rosner H, et al. Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys Chem Chem Phys 2002; 4(11): 2273-7. http://dx.doi.org/10.1039/b201570f
Sun YP, Huang W, Lin Y, Fu K, Kitaygorodskiy A, Riddle LA, et al. Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem Mater 2001; 13(9): 2864-9. http://dx.doi.org/10.1021/cm010069l
Hamon MA, Hui H, Bhowmik P, Itkis HME, Haddon RC. Esterfunctionalized soluble single-walled carbon nanotubes. Appl Phys A. Mater Sci Process 2002; 74(3): 333-8. http://dx.doi.org/10.1007/s003390201281
Chen X, Tao F, Wang J, Yang H, Zou J, Chen X, et al. Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite. Mater Sci Eng A 2009; 499(1-2): 469-75. http://dx.doi.org/10.1016/j.msea.2008.09.044
Chen S, Shen W, Wu G, Chen D, Jiang M. A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups. Chem Phys Lett 2005; 402(4-6): 312-7. http://dx.doi.org/10.1016/j.cplett.2004.12.035
Zeng L, Zhang L, Barron AR. Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length. Nano Lett 2005; 5(10): 2001-4. http://dx.doi.org/10.1021/nl0514994
Banerjee S, Kahn MGC, Wong SS. Rational chemical strategies for carbon nanotube functionalization. Chem Eur J 2003; 9: 1898-908. http://dx.doi.org/10.1002/chem.200204618
Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM. Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 2008; 328: 421-8. http://dx.doi.org/10.1016/j.jcis.2008.09.015
Al-Saleh MH, Al-Anid HK, Hussain YA. CNT/ABS nanocomposites by solution processing: Proper dispersion and selective localization for low percolation threshold. Compos A Appl Sci Manuf 2013; 46: 53-9. http://dx.doi.org/10.1016/j.compositesa.2012.10.010
Göldel A, Kasaliwal GR, Pötschke P, Heinrich G. The kinetics of CNT transfer between immiscible blend phases during melt mixing. Polymer 2012; 53(2): 411-21. http://dx.doi.org/10.1016/j.polymer.2011.11.039
Bose S, Mukherjee M, Pal K, Nayak GC, Das CK. Development of core-shell structure aided by SiC-coated MWNT in ABS/LCP blend. Polym Adv Technol 2010; 21(4): 272-8.
Yang Z, Donga B, Huanga Y, Liu L, Yan FY, Li HL. Enhanced wear resistance and micro-hardness of polystyrene nanocomposites by carbon nanotubes. Mater Chem Phys 2005; 94: 109-13. http://dx.doi.org/10.1016/j.matchemphys.2005.04.029
Khan MU, Gomes VG, Altarawneh IS. Synthesizing polystyrene/carbon nanotube composites by emulsion polymerization with non-covalent and covalent functionalization. Carbon 2010; 48(10): 2925-33. http://dx.doi.org/10.1016/j.carbon.2010.04.029
Choi HJ, Zhang K, Lim JY. Multi-walled carbon nanotube/polystyrene composites prepared by in-situ bulk sonochemical polymerization. J Nanosci Nanotechnol 2007; 7(10): 3400-3. http://dx.doi.org/10.1166/jnn.2007.833
Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, et al. Study on poly(methyl methacrylate): carbon nanotube composites. Mater Sci Eng A 1999; 271: 395-400. http://dx.doi.org/10.1016/S0921-5093(99)00263-4
Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS. Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by insitu bulk polymerization. Macromol Rapid Commun 2003; 24: 1070-3. http://dx.doi.org/10.1002/marc.200300089
Annala M, Lahelin M, Seppälä J. The effect of MWCNTs on molar mass in in situ polymerization of styrene and methyl methacrylate. Eur Polym J 2012; 48(9): 1516-24. http://dx.doi.org/10.1016/j.eurpolymj.2012.05.016
Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci 2011; 36(7): 914-44. http://dx.doi.org/10.1016/j.progpolymsci.2010.11.004