Crystallization of Poly (Lactic Acid), PLA: Effect of Nucleating Agents and Structure-Properties Relationships

Authors

  • Marwa Abid Ingénierie des Matériaux Polymères IMP, UMR 5223, INSA Lyon, University of Lyon, Villeurbanne, France
  • Benoit Mallet Ingénierie des Matériaux Polymères IMP, UMR 5223, INSA Lyon, University of Lyon, Villeurbanne, France
  • Khalid Lamnawar Ingénierie des Matériaux Polymères IMP, UMR 5223, INSA Lyon, University of Lyon, Villeurbanne, France
  • Abderrahim Maazouz Ingénierie des Matériaux Polymères IMP, UMR 5223, INSA Lyon, University of Lyon, Villeurbanne, France

DOI:

https://doi.org/10.12974/2311-8717.2018.06.5

Keywords:

Poly (lactic acid), Crystallization kinetics, Nucleating agents.

Abstract

In this paper, a brief state of the art is given firstly on structure-processing-properties relationships on PLA. Secondly, a specific focus is devoted on some recent and not yet unpublished recent work regarding the isothermal and non-isothermal crystallization behaviors of the poly (lactic acid). Thereby, they were investigated by differential scanning calorimetry. The effect of heterogeneous nucleation was assessed by additive talc, ethylenebis (12- hydroxy stearyl amide) (EBHSA) and polyethylene glycol (PEG) as potential nucleating agents. Thus, the improvement of crystallization kinetics under isothermal crystallization was described by the Avrami equation. A new formulation system can be used as a nucleating agent. This system consists of (1% wt talc, 1% wt PEG and x% wt EBHSA), “x” is equal to 1, 3 and 5%. Startling, Its increase the crystallization rate of pure PLA and reduce drastically its half-time of crystallization. Hence, the obtained results are for the great interest of some biopolymer processing as well injection molding or extrusion. 

References

Tianyi Ke, Xiuzhi Sun, Journal of Applied Polymer science, 2003; 89; 1203-1210. https://doi.org/10.1002/app.12162

R. Masirek, E. Piorkowska, A.Galeski, M.Mucha, Journal of Applied Polymer science, 2007; 105: 282-290. https://doi.org/10.1002/app.26047

H. Li and M. Huneault, Polymer, 2007; 48: 6855-6866. https://doi.org/10.1016/j.polymer.2007.09.020

Tuominen J, Kylmä J, Seppälä J. Chain extending of lactic acid oligomers. 2. Increase of molecular weight with 1,6- hexamethylene diisocyanate and 2,2'-bis(2-oxazoline). Polymer 2002; 43(1): 3-10. https://doi.org/10.1016/S0032-3861(01)00606-1

Zhou ZF, Huang GQ, Xu WB, Ren FM. Chain extension and branching of poly (L-lactic acid) produced by reaction with a DGEBA-based epoxy resin. EXPRESS Polymer Letters 2007; 1(11): 734-739. https://doi.org/10.3144/expresspolymlett.2007.101

Gruber PR, Hartmann MH, Kolstad JJ, Witzke DR, Brosch AL. 1996; PCT 94/ 08 508.

Pilla S, Kim SG, Auer GK, Gong S, Park CB. Microcellular extrusion-foaming of polylactide with chain-extender. Polymer Engineering & Science 2009; 49(8): 1653-1660. https://doi.org/10.1002/pen.21385

Yingwei D, Salvatore I, Ernesto Di M, Luigi N. Reactively Modified Poly (lactic acid): Properties and Foam Processing. Macromolecular Materials and Engineering 2005; 290(11): 1083-1090. https://doi.org/10.1002/mame.200500115

Mihai M, Huneault MA, Favis BD. Rheology and extrusion foaming of chain-branched poly (lactic acid). Polymer Engineering & Science 2010; 50(3): 629-642. https://doi.org/10.1002/pen.21561

Dorgan JR, Lehermeier H, Mang M. Thermal and Rheological Properties of Commercial- Grade Poly (Lactic Acid) Journal of Polymers and the Environment 2000; 8(1): 1-9. https://doi.org/10.1023/A:1010185910301

Han Gi C, Byoung Chul K, Seung Soon I, Yang Kyoo H. Effect of molecular weight and branch structure on the crystallization and rheological properties of poly (butylene adipate). Polymer Engineering & Science 2001; 41(7): 1133- 1139. https://doi.org/10.1002/pen.10814

Krumme A, Lehtinen A, Viikna A. Crystallisation behaviour of high-density polyethylene blends with bimodal molar mass distribution 1. Basic characteristics and isothermal crystallisation. European Polymer Journal 2004; 40(2): 359- 369. https://doi.org/10.1016/j.eurpolymj.2003.10.005

Liu G, Zhao M. Isothermal crystallization kinetics of AB3 hyperbranched polymer (HBP)/polypropylene (PP) blends. Polymer Bulletin 2009; 63(4): 565-573. https://doi.org/10.1007/s00289-009-0128-x

Mc Kee MG, Unal S, Wilkes GL, Long TE. Branched polyesters: recent advances in synthesis and performance. Progress in Polymer Science 2005; 30(5): 507-539. https://doi.org/10.1016/j.progpolymsci.2005.01.009

Miyata T, Masuko T. Crystallization behaviour of poly(Llactide). Polymer 1998; 39(22): 5515- 5521. https://doi.org/10.1016/S0032-3861(97)10203-8

Al-Itry R, Lamnawar K., Maazouz A. 2014. Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends Rheologica acta 53, 7, 501-517 DOI: 10.1007/s00397-014-0774-2. https://doi.org/10.1007/s00397-014-0774-2

Walha F., Lamnawar K, Maazouz A. Jaziri M. Preparation and characterization of Bio-sourced Blends based on Poly (lactic acid) and Polyamide 11: Structure-properties relationships and Enhancement of film blowing processability. Advances in Polymer Technology 2018; 37 (6): 2061-2074. https://doi.org/10.1002/adv.21864

Lamnawar K., Maazouz A., Cabrera G., Al-Itry R., Interfacial Tension Properties in Biopolymer Blends: From Deformed Drop Retraction Method (DDRM) to Shear and Elongation Rheology-Application to Blown Film Extrusion, International Polymer Processing Vol. 33, 3. 411-424 DOI 10.3139/217.3614

Zenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczynska M, Karasiewicz T. Characterization of multiextruded poly (lactic acid). Polymer Testing 2009; 28(4): 412- 418. https://doi.org/10.1016/j.polymertesting.2009.01.012

Wang Y, Steinhoff B, Brinkmann C, Alig I. In-line monitoring of the thermal degradation of poly (l-lactic acid) during melt extrusion by UV-vis spectroscopy. Polymer 2008; 49(5): 1257-1265. https://doi.org/10.1016/j.polymer.2008.01.010

Bopp RCGV, MN, US), Whelan, Jason (New Hope, MN, US). 2008(20080258357).

Van den Oever MJA, Beck B, Müssig J. Agrofibre reinforced poly (lactic acid) composites: Effect of Moisture on degradation and Mechanical properties. Composites Part A: Applied Science and Manufacturing.In Press, Accepted Manuscript. 2010.

Shin S, Kazuhiko I, Masatoshi I. Development of Kenaf Fiber- Reinforced Polylactic Acid for Use in Electronic Products. Japanese Journal of Polymer Science and Technology 2005; 62(4): 177-182.

Xu H, Teng C, Yu M. Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer 2006; 47(11): 3922-3928. https://doi.org/10.1016/j.polymer.2006.03.090

Anderson KS, Hillmyer MA. Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 2006; 47(6): 2030-2035. https://doi.org/10.1016/j.polymer.2006.01.062

Iotti M, Fabbri P, Messori M, Pilati F, Fava P. Organic– Inorganic Hybrid Coatings for the Modification of Barrier Properties of Poly (lactic acid) Films for Food Packaging Applications. Journal of Polymers and the Environment 2009; 17(1): 10-19. https://doi.org/10.1007/s10924-009-0120-4

Hirvikorpi T, Vähä-Nissi M, Harlin A, Karppinen M. Comparison of some coating techniques to fabricate barrier layers on packaging materials. Thin Solid Films 2010; 518(19): 5463-5466. https://doi.org/10.1016/j.tsf.2010.04.018

Sinha Ray S, Okamoto K, Okamoto M. Structure - Property Relationship in Biodegradable Poly (butylene succinate)/Layered Silicate Nanocomposites. Macromolecules 2003; 36(7): 2355- 2367. https://doi.org/10.1021/ma021728y

Maazouz A., Lamnawar K., Mallet B. 2010. Polymer composition based on poly lactic acid, useful in piece/object, comprises poly lactic acid and additive mixture, for promoting crystallization of poly lactic acid, comprising mineral filler, glycol polyether, and aliphatic amide. Accepted French and International patent: C08L67/00; C08J5/10. FR2941702 (A1);

Maazouz A., Lamnawar K., Mallet B. Frontiers in Science and Engineering (international journal) 2011: 1-44.

Walha F., Lamnawar K., Maazouz A, Jaziri M. Rheological, Morphological and Mechanical Studies of Sustainably Sourced Polymer Blends Based on Poly (Lactic Acid) and Polyamide 11. Polymers 2016; 8(61): 1-23. https://doi.org/10.3390/polym8030061

Al-Itry R., Lamnawar K., Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy, Polymer Degradation and Stability 2012; 97(10): 1898-1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028

Downloads

Published

2018-05-03

How to Cite

Abid, M., Mallet, B., Lamnawar, K., & Maazouz, A. (2018). Crystallization of Poly (Lactic Acid), PLA: Effect of Nucleating Agents and Structure-Properties Relationships. Journal of Composites and Biodegradable Polymers, 6, 34–46. https://doi.org/10.12974/2311-8717.2018.06.5

Issue

Section

Articles