Representative Volume Element Homogenization of a Composite Material by Using Bond-Based Peridynamics

Authors

  • Wenxuan Xia Peridynamics Research Centre Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow United Kingdom
  • Yakubu Kasimu Galadima Peridynamics Research Centre Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow United Kingdom
  • Erkan Oterkus Peridynamics Research Centre Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow United Kingdom
  • Selda Oterkus Peridynamics Research Centre Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow United Kingdom

DOI:

https://doi.org/10.12974/2311-8717.2019.07.7

Keywords:

Peridynamics, Homogenization, Unit cell, Composite material.

Abstract

This study presents representative volume element (RVE) homogenization by using bond-based peridynamics. First, a method to perform RVE homogenisation analysis with bond-based peridynamic theory is demonstrated. Homogenized material properties of a unit-sized fibre reinforced composite cell with varying fibre volume fraction are predicted using the present method. Peridynamic results are compared against a finite element based RVE approach and a good agreement is observed between the two approaches. 

References

Yu W. Structure genome: fill the gap between materials genome and structural analysis. In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2015; (p. 0201). https://doi.org/10.2514/6.2015-0201

Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids 2000; 48(1): 175-209. https://doi.org/10.1016/S0022-5096(99)00029-0

Madenci E and Oterkus S. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. Journal of the Mechanics and Physics of Solids 2016; 86: 192-219. https://doi.org/10.1016/j.jmps.2015.09.016

Oterkus E and Madenci E. Peridynamic theory for damage initiation and growth in composite laminate. In Key Engineering Materials 2012; 488: 355-358. Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.488-489.355

Oterkus E and Madenci E. Peridynamics for failure prediction in composites. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA 2012; (p. 1692). https://doi.org/10.2514/6.2012-1692

De Meo D, Zhu N and Oterkus E. Peridynamic modeling of granular fracture in polycrystalline materials. Journal of Engineering Materials and Technology 2016; 138(4): 041008. https://doi.org/10.1115/1.4033634

Zhu N, De Meo D and Oterkus E. Modelling of granular fracture in polycrystalline materials using ordinary statebased peridynamics. Materials 2016; 9(12): 977. https://doi.org/10.3390/ma9120977

Madenci E, Barut A and Phan N. Peridynamic unit cell homogenization for thermoelastic properties of heterogenous microstructures with defects. Composite Structures 2018; 188: 04-115. https://doi.org/10.1016/j.compstruct.2018.01.009

Oterkus S and Madenci E. Peridynamics for fully coupled thermomechanical analysis of fiber reinforced laminates. In 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference 2014; (p. 0694). https://doi.org/10.2514/6.2014-0694

Alpay S and Madenci E. Crack growth prediction in fullycoupled thermal and deformation fields using peridynamic theory. In 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 2013; (p. 1477). https://doi.org/10.2514/6.2013-1477

Gao Y and Oterkus S. Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems. Continuum Mechanics and Thermodynamics 2019; 31(4): 907-937. https://doi.org/10.1007/s00161-018-0691-1

Diyaroglu C, Oterkus S, Oterkus E and Madenci E. Peridynamic modeling of diffusion by using finite-element analysis. IEEE Transactions on Components, Packaging and Manufacturing Technology 2017; 7(11): 1823-1831. https://doi.org/10.1109/TCPMT.2017.2737522

Diyaroglu C, Oterkus S, Oterkus E, Madenci E, Han S and Hwang Y. Peridynamic wetness approach for moisture concentration analysis in electronic packages. Microelectronics Reliability 2017; 70: 103-111. https://doi.org/10.1016/j.microrel.2017.01.008

Oterkus E, Guven I and Madenci E. Impact damage assessment by using peridynamic theory. Open Engineering 2012; 2(4): 523-531. https://doi.org/10.2478/s13531-012-0025-1

De Meo D and Oterkus E. Finite element implementation of a peridynamic pitting corrosion damage model. Ocean Engineering 2017; 135: 76-83. https://doi.org/10.1016/j.oceaneng.2017.03.002

Wang H, Oterkus E and Oterkus S. Predicting fracture evolution during lithiation process using peridynamics. Engineering Fracture Mechanics 2018; 192: 176-191. https://doi.org/10.1016/j.engfracmech.2018.02.009

Javili A, Morasata R, Oterkus E and Oterkus S. Peridynamics review. Mathematics and Mechanics of Solids 2019; 24(11): 3714-3739. https://doi.org/10.1177/1081286518803411

Madenci E and Oterkus E. Peridynamic Theory. In Peridynamic Theory and Its Applications 2014; (pp. 19-43). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8465-3_2

Drago A and Pindera MJ. Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Composites science and technology 2007; 67(6): 1243-1263. https://doi.org/10.1016/j.compscitech.2006.02.031

Hill R. On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1972; 326(1565): 131-147. https://doi.org/10.1098/rspa.1972.0001

Yu W and Liu X. 2015. SwiftComp.

Downloads

Published

2019-03-08

How to Cite

Xia, W., Galadima, Y. K., Oterkus, E., & Oterkus, S. (2019). Representative Volume Element Homogenization of a Composite Material by Using Bond-Based Peridynamics. Journal of Composites and Biodegradable Polymers, 7, 51–56. https://doi.org/10.12974/2311-8717.2019.07.7

Issue

Section

Articles