Tuning the Properties of Biodegradable Poly(Butylene Succinate) Via Random and Block Copolymerization
DOI:
https://doi.org/10.12974/2311-8717.2020.08.7Keywords:
Poly(butylene succinate), Random copolymerization, Block copolymerization, Crystallization, Biodegradability.Abstract
In this mini-review, the effect of random and block copolymerization on crystallization and properties of biodegradable poly(butylene succinate) is outlined. For random copolymerization, the effect of minor co-monomers can be divided into two categories: In most of the cases, the minor co-monomer units will be excluded from the crystal lattice of the major monomer units, which leads to the decreased melting point, lower crystallinity and slower crystallization kinetics. Consequently, the copolymers will be more flexible. Copolymerization with other aliphatic units results in enhanced biodegradation rate, while copolymerization with aromatic units may depress the biodegradation rate. There is an exceptional case, e.g. in poly(butylene succinate-co-butylene fumarate), where the co-monomer units can cocrystallize with the major monomer units in the whole range of copolymer composition, resulting in almost invariant degree of crystallinity. Whether some content of co-monomer units is included in the crystal lattice of the major monomer units or not is still an open question and deserves further study. Furthermore, block copolymerization is an alternative option to tune the properties, which may open a new window for designing biodegradable polymers, especially thermoplastic elastomers. Block and multiblock copolymers combine the properties of the different blocks and the crystallization behavior depends on the block length and miscibility of the blocks. When the block length is large enough, the melting point of such block will not vary much with its content, which is distinctly different from the random copolymers. Incorporation of more hydrophilic blocks, such as aliphatic polyethers will considerably enhance the hydrolytic degradation rate.
References
Fujimaki, T. Processability and properties of aliphatic polyesters, 'BIONOLLE', synthesized by polycondensation reaction. Polymer Degradation and Stability 1998; 59, 209- 214. https://doi.org/10.1016/S0141-3910(97)00220-6
Ishioka R, Kitakuni E, Ichikawa Y. Aliphatic polyesters: "Bionolle". In: Doi, Y., Steinbüchel, A. (Eds.), Biopolymers, Vol 4, Polyesters III Applications and Commercial Products. Wiley-VCH, New York 2002; pp. 275-297. https://doi.org/10.1002/3527600035.bpol4010
Xu J, Guo BH. Microbial succinic acid, its polymer poly (butylene succinate), and applications. Plastics from Bacteria. Springer Berlin Heidelberg. 2010; 347-388. https://doi.org/10.1007/978-3-642-03287-5_14
Xu J, Guo BH. Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnology Journal 2010; 5, 1149-1163. https://doi.org/10.1002/biot.201000136
Guo BH, Ding HG, Xu XL, Xu J, Sun YB. Studies on the sequence structure and crystallinity of poly (butylene succinate) copolymers with terephthalic acid. Chemical Journal of Chinese Universities-Chinese Edition 2003; 24, 2316-2319.
Sun YB, Xu J, Xu YX, Guo BH. Synthesis and crystallization behavior of biodegradable poly (butylene succinate-cobutylene phenylsuccinate). Acta Polymerica Sinica 2006; (6), 745-749. https://doi.org/10.3724/SP.J.1105.2006.00745
Nikolic MS, Djonlagic J. Synthesis and characterization of biodegradable poly (butylene succinate-co-butylene adipate)s. Polymer Degradation and Stability 2001; 74, 263- 270. https://doi.org/10.1016/S0141-3910(01)00156-2
Zhang SP, Yang J, Liu XY, Chang JH, Cao AM. Synthesis and characterization of poly (butylene succinate-co-butylene malate): a new biodegradable copolyester bearing hydroxyl pendant groups. Biomacromolecules 2003; 4, 437-445. https://doi.org/10.1021/bm0201183
Mincheva R, Delangre A, Raquez JM, Narayan R, Dubois P. Biobased polyesters with composition-dependent thermomechanical properties: synthesis and characterization of poly (butylene succinate-co-butylene azelate). Biomacromolecules 2013; 14, 890-899. https://doi.org/10.1021/bm301965h
Zakharova E, Lavilla C, Alla A, et al. Modification of properties of poly (butylene succinate) by copolymerization with tartaric acid-based monomers. European Polymer Journal 2014; in press. https://doi.org/10.1016/j.eurpolymj.2014.09.024
Wu LB, Mincheva R, Xu YT, Raquez JM, Dubois P. High Molecular Weight Poly (butylene succinate-co-butylene furandicarboxylate) Copolyesters: From Catalyzed Polycondensation Reaction to Thermomechanical Properties. Biomacromolecules 2012; 13, 2973-2981. https://doi.org/10.1021/bm301044f
Lee SH, Wang S. Crystallization behaviour of cellulose acetate butylate/poly (butylene succinate)-co-(butylene carbonate) blends. Polymer International 2006; 55, 292-298. https://doi.org/10.1002/pi.1951
Xu YX, Xu J, Liu DH, Guo BH, Xie XM. Synthesis and characterization of biodegradable poly (butylene succinateco- propylene succinate)s. Journal of Applied Polymer Science 2008; 109, 1881-1889. https://doi.org/10.1002/app.24544
Wang GL, Gao B, Ye HM, Xu J, Guo BH. Synthesis and characterizations of branched poly (butylene succinate) copolymers with 1, 2-octanediol segments. Journal of Applied Polymer Science 2010; 117, 2538-2544. https://doi.org/10.1002/app.32168
Wang GL, Guo BH, Li R. Synthesis, characterization, and properties of long-chain branched poly (butylene succinate). Journal of Applied Polymer Science 2012; 124, 1271-1280. https://doi.org/10.1002/app.34034
Cao A, Okamura T, Nakayama K, Inoue Y, Masuda T. Studies on syntheses and physical properties of biodegradable aliphatic poly (butylene succinate-co-ethylene succinate)s and poly (butylene succinate-co-diethylene glycol succinate)s. Polymer Degradation and Stability 2002; 78, 107-117. https://doi.org/10.1016/S0141-3910(02)00124-6
Yang Y, Qiu Z. Crystallization kinetics and morphology of biodegradable poly (butylene succinate-co-ethylene succinate) copolyesters: effects of co-monomer composition and crystallization temperature. CrystEngComm 2011; 13, 2408-2417. https://doi.org/10.1039/c0ce00598c
Wan T, Du T, Liao S. Biodegradable poly (butylene succinate-co-cyclohexanedimethylene succinate): Synthesis, crystallization, morphology, and rheology. Journal of Applied Polymer Science 2014; 131, 40103. https://doi.org/10.1002/app.40103
Wang GY, Qiu ZB. Synthesis, Crystallization Kinetics, and Morphology of Novel Biodegradable Poly (butylene succinate-co-hexamethylene succinate) Copolyesters. Industrial & Engineering Chemistry Research 2012; 51, 16369-16376. https://doi.org/10.1021/ie302817k
Xie WJ, Zhou XM. Non-isothermal crystallization kinetics and characterization of biodegradable poly (butylene succinateco- neopentyl glycol succinate) copolyesters. Materials Science and Engineering: C. 2014; 46, 366-373. https://doi.org/10.1016/j.msec.2014.10.063
Nikolic MS, Poleti D, Djonlagic J. Synthesis and characterization of biodegradable poly (butylene succinateco- butylene fumarate) s. European Polymer Journal 2003; 39, 2183-2192. https://doi.org/10.1016/S0014-3057(03)00139-3
Ye HM, Wang RD, Liu J, Xu J, Guo BH. Isomorphism in poly(butylene succinate-co-butylene fumarate) and its application as polymeric nucleating agent for poly(butylene succinate). Macromolecules 2012; 45, 5667-5685. https://doi.org/10.1021/ma300685f
Pérez-Camargo RA, Arandia I, Safari M, Cavallo D, Lottic N, Soccioc M, Müller AJ. Crystallization of isodimorphic aliphatic random copolyesters: Pseudoeutectic behavior and doublecrystalline materials. European Polymer Journal 2018; 101, 233-247. https://doi.org/10.1016/j.eurpolymj.2018.02.037
Ahn BD, Kim SH, Kim YH, Yang JS. Synthesis and Characterization of the Biodegradable Copolymers from Succinic Acid and Adipic Acid with 1,4-Butanediol. Journal of Applied Polymer Science 2001, 82; 2808-2826 https://doi.org/10.1002/app.2135
Pérez-Camargo RA, Fernández-d'Arlas B, Cavallo D, Debuissy T, Pollet E, Avérous L, Müller AJ. Tailoring the structure, morphology, and crystallization of isodimorphic poly(butylene succinate-ran-butylene adipate) random copolymers by changing composition and thermal history. Macromolecules 2017; 50, 597-608. https://doi.org/10.1021/acs.macromol.6b02457
Debuissy T, Pollet E, Avérous L. Synthesis and characterization of biobased poly(butylene succinate-ranbutylene adipate). Analysis of the composition dependent physicochemical properties. European Polymer Journal 2017; 87, 84-98. https://doi.org/10.1016/j.eurpolymj.2016.12.012
Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y. Structural Effects upon Enzymatic Hydrolysis of Poly(butylene succinate-co-ethylene succinate)s. Macromolecules 1997; 30, 7403-7407 https://doi.org/10.1021/ma970036k
Kuwabara K, Gan ZH, Nakamura T, Abe H, Doi Y. Molecular Mobility and Phase Structure of Biodegradable Poly(butylene succinate) and Poly(butylene succinate-co-butylene adipate). Biomacromolecules 2002; 3, 1095-1100. https://doi.org/10.1021/bm025575y
Papageorgiou GZ, Bikiaris DN. Synthesis, Cocrystallization, and Enzymatic Degradation of Novel Poly(butylene-copropylene succinate) Copolymers. Biomacromolecules 2007; 8, 2437-2449 https://doi.org/10.1021/bm0703113
Li FX, Xu XJ, Hao QH, Li QB, Yu JY, Cao AM. Effects of Comonomer Sequential Structure on Thermal and Crystallization Behaviors of Biodegradable Poly(butylene succinate-co-butylene terephthalate)s. Journal of Polymer Science: Part B: Polymer Physics 2006; 44, 1635-1644. https://doi.org/10.1002/polb.20797
Rorrer NA, Dorgan JR, Vardon DR, Martinez CR, Yang Y, Beckham GT. Renewable Unsaturated Polyesters from Muconic Acid. ACS Sustainable Chem. Eng. 2016; 4, 6867−6876. https://doi.org/10.1021/acssuschemeng.6b01820
Teramoto N, Ozeki M, Fujiwara I, Shibata M. Crosslinking and Biodegradation of Poly(butylene succinate) Prepolymers Containing Itaconic or Maleic Acid Units in the Main Chain. J Appl Polym Sci 2005; 95, 1473-1480. https://doi.org/10.1002/app.21393
Lv A, Cui Y, Du FS, Li ZC. Thermally Degradable Polyesters with Tunable Degradation Temperatures via Postpolymerization Modification and Intramolecular Cyclization. Macromolecules 2016; 49, 8449-8458. https://doi.org/10.1021/acs.macromol.6b01325
Yu Y, Wei ZY, Zheng LC, Jin CH, Leng XF, Li Y. Competition and miscibility of isodimorphism and their effects on band spherulites and mechanical properties of poly(butylene succinate-co-cis-butene succinate) unsaturated aliphatic copolyesters. Polymer 2018; 150, 52-63. https://doi.org/10.1016/j.polymer.2018.07.024
Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly (butylene succinate-co-butylene adipate). Polymer Degradation and Stability 2006; 91, 367- 376. https://doi.org/10.1016/j.polymdegradstab.2005.04.035
Rizzarelli P, Puglisi C, Montaudo G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polymer Degradation and Stability 2004; 85, 855-863. https://doi.org/10.1016/j.polymdegradstab.2004.03.022
Zhang M, Ma XN, Li CT, Zhao D, Xing YL, Qiu JH. A correlation between the degradability of poly(butylene succinate)-based copolyesters and catalytic behavior with Candida antarctica lipase B. RSC Adv. 2017; 7, 43052- 43063. https://doi.org/10.1039/C7RA05553F
Wittmann JC, Lotz B. Epitaxial crystallization of polyethylene on organic substrates: A reappraisal of the mode of action of selected nucleating agents. Journal of Polymer Science: Polymer Physics Edition 1981; 19, 1837-1851. https://doi.org/10.1002/pol.1981.180191204
Ye H M, Tang Y R, Xu J, Guo BH. Role of Poly (butylene fumarate) on Crystallization Behavior of Poly (butylene succinate). Industrial & Engineering Chemistry Research 2013; 52, 10682-10689. https://doi.org/10.1021/ie4010018
Ba CY, Yang J, Hao QH, Liu XY, Cao AM. Syntheses and physical characterization of new aliphatic triblock poly(Llactide- b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules 2003; 4, 1827-1834. https://doi.org/10.1021/bm034235p
Jia L, Yin LZ, Li Y, Li QB, Yang J, Yu JY, Shi Z, Fang Q, Cao AM. New Enantiomeric Polylactide-block-Poly(butylene succinate)-block-Polylactides: Syntheses, Characterization and in situ Self-Assembly. Macromol. Biosci. 2005; 5, 526- 538. https://doi.org/10.1002/mabi.200400227
Zhang B, Bian XC, Xiang S, Li G, Chen XS. Synthesis of PLLA-based block copolymers for improving melt strength and toughness of PLLA by in situ reactive blending. Polymer Degradation and Stability 2017; 136, 58-70. https://doi.org/10.1016/j.polymdegradstab.2016.11.022
Supthanyakul R, Kaabbuathong N, Chirachanchai S. Poly(Llactide- b-butylene succinate-b-L-lactide) triblock copolymer: A multi-functional additive for pla/pbs blend with a key performance on film clarity. Polym. Degrad. Stabil. 2017; 142, 160-168. https://doi.org/10.1016/j.polymdegradstab.2017.05.029
Feng CS, Chen Y, Shao J, Li G, Hou HQ. The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Tri-block Copolymers. Chinese J. Polym. Sci. 2020; 38, 298-310. https://doi.org/10.1007/s10118-020-2361-6
Lee CW, Masutani K, Kimura Y. Ring-opening polymerization of a macrocyclic lactone monomer isolated from oligomeric byproducts of poly(butylene succinate) (PBS): An efficient route to high-molecular-weight PBS and block copolymers of PBS. Polymer 2014; 55, 5673-5679. https://doi.org/10.1016/j.polymer.2014.08.028
Zeng JB, Zhu QY, Lu X, He YS, Wang YZ. From miscible to partially miscible biodegradable double crystalline poly (ethylene succinate)-b-poly(butylene succinate) multiblock copolymers. Polymer Chemistry 2012; 3, 399-408. https://doi.org/10.1039/C1PY00456E
Xu CL, Zeng JB, Zhu QY, Wang YZ. Poly(ethylene succinate)-b-poly(butylene succinate) Multiblock Copolyesters: The Effects of Block Length and Composition on Physical Properties. Industrial and Engineering Chemistry Research 2013; 52, 13669-13676. https://doi.org/10.1021/ie4018379
Zeng JB, Liu C, Liu FY, Li YD, Wang YZ. Miscibility and Crystallization Behaviors of Poly(butylene succinate) and Poly(L-lactic acid) Segments in Their Multiblock Copoly(ester urethane). Industrial and Engineering Chemistry Research 2010; 49, 9870-9876. https://doi.org/10.1021/ie101444x
Mincheva R, Raquez JM, Lison V, Duquesne E, Talon O, Dubois P. Stereocomplexes from Biosourced Lactide/Butylene Succinate-Based Copolymers and Their Role as Crystallization Accelerating Agent. Macromol. Chem. Phys. 2012; 213, 643-653. https://doi.org/10.1002/macp.201100620
D'Ambrosio RM, Michell RM, Mincheva R, Hernández R, Mijangos C, Dubois P, Müller AJ. Crystallization and Stereocomplexation of PLA-mb-PBS Multi-Block Copolymers. Polymers 2018, 10, 8. https://doi.org/10.3390/polym10010008
LiWD, Zeng JB, Lou XJ, Zhang JJ, Wang YZ. Polymer Chemistry 2012; 3, 1344. https://doi.org/10.1039/c2py20068f
Zheng LC, Li CC, Wang ZD, Wang J, Xiao YN, Zhang D, Guan GH. Industrial and Engineering Chemistry Research 2012; 51, 7264. https://doi.org/10.1021/ie300576z
Huang MM, Dong X,Wang LL,Zheng LC, Liu GM, Gao X, Li CC, Müller AJ, Wang DJ. Reversible Lamellar Periodic Structures Induced by Sequential Crystallization/Melting in PBS-co-PCL Multiblock Copolymer. Macromolecules 2018; 51, 1100-1109. https://doi.org/10.1021/acs.macromol.7b01779
Zeng XQ, Wu BS, Wu LB, Hu JJ, Bu ZY, Li BG. Poly(L‑lactic acid)-block-poly(butylene succinate-co-butylene adipate) Multiblock Copolymers: From Synthesis to Thermo- Mechanical Properties. Ind. Eng. Chem. Res. 2014; 53, 3550−3558. https://doi.org/10.1021/ie403623f
Qin JX, Lin LM, Wang SJ, Ye SX, Luo WK, Xiao M, Han DM, Meng YZ. Multiblock copolymers of PPC with oligomeric PBS: with low brittle-toughness transition temperature. RSC Adv. 2018; 8, 14722-14731. https://doi.org/10.1039/C8RA01588K
Zeng J B, Li YD, Zhu Q Y, Yang KK, Wang X L, Wang YZ. A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 2009; 50, 1178-1186. https://doi.org/10.1016/j.polymer.2009.01.001
Liu GM, Zheng LC, Zhang XQ, Li CC, Wang DJ. Critical Stress for Crystal Transition in Poly(butylene succinate)- Based Crystalline-Amorphous Multiblock Copolymers. Macromolecules 2014; 47, 7533-7539. https://doi.org/10.1021/ma501832z
Zhang Y, Feng ZG, Zhang AY. Synthesis and characterization of poly(butylene terephthalate)-copoly( butylene succinate)-block-poly(ethylene glycol) segmented block copolymers) Segmented Block Copolymer. Polym Int 2003; 52,1351-1358. https://doi.org/10.1002/pi.1222
Pepic D, Zagar E, Zigon M, Krzan A, Kunaver M, Djonlagic J. Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments. European Polymer Journal 2008; 44, 904-917. https://doi.org/10.1016/j.eurpolymj.2007.11.035
Huang C L, Jiao L, Zhang JJ, Zeng JB, Yang KK, Wang YZ. Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: Synthesis, structure, properties and shape memory performance. Polymer Chemistry 2012; 3, 800-808. https://doi.org/10.1039/c2py00603k
Huang X, Li CC, Zheng LC, Zhang D, Guan GH, Xiao YM. Synthesis, characterization and properties of biodegradable poly(butylene succinate)-block-poly(propylene glycol) segmented copolyesters. Polym Int 2009; 58, 893-899. https://doi.org/10.1002/pi.2609
Lee HS, Park HD, Cho CK. Domain and Segment Orientation Behavior of PBS-PTMG Segmented Block Copolymers. J Appl Polym Sci 2000; 77, 699-709. https://doi.org/10.1002/(SICI)1097- 4628(20000718)77:3<699::AID-APP25>3.0.CO;2-H
Park YH, Cho CG. Synthesis and Characterization of Poly[(butylene succinate)-co-(butylene terephthalate)]-bpoly( tetramethylene glycol) Segmented Block Copolymer. J Appl Polym Sci 2001; 79, 2067-2075. https://doi.org/10.1002/1097- 4628(20010314)79:11<2067::AID-APP1016>3.0.CO;2-4
Wu SY, Zhang Y, Han JR, Xie ZN, Xu J, Guo BH. Copolymerization with Polyether Segments Improves the Mechanical Properties of Biodegradable Polyesters. ACS Omega 2017; 2, 2639−2648. https://doi.org/10.1021/acsomega.7b00517
Huang CL, Jiao L, Zeng JB, Zhang JJ, Yang KK, Wang YZ. Fractional Crystallization and Homogeneous Nucleation of Confined PEG Microdomains in PBS-PEG Multiblock Copolymers. Journal of Physical Chemistry B 2013, 117, 10665-10676. https://doi.org/10.1021/jp4059966
Pepic D, Nikolic MS, Djonlagic J. Synthesis and characterization of biodegradable aliphatic copolyesters with poly(tetramethylene oxide) soft segments. Journal of Applied Polymer Science 2007; 106, 1777-1786. https://doi.org/10.1002/app.26860
Lee CW, Akashi M, Kimura Y, Masutani K. Synthesis and Enzymatic Degradability of an Aliphatic/Aromatic Block Copolyester: Poly(butylene succinate)-multi-Poly(butylene terephthalate). Macromolecular Research 2017; 25, 54-62. https://doi.org/10.1007/s13233-017-5011-2
Kint DPR, Alla A, Deloret E, Campos JL, Muñoz-Guerra S. Synthesis, characterization, and properties of poly(ethylene terephthalate)/poly(1,4-butylene succinate) block copolymers. Polymer 2003; 44, 1321-1330. https://doi.org/10.1016/S0032-3861(02)00938-2
Sheikholeslami SN, Rafizadeh M, Taromi FA, Shirali H. Crystallization and photo-curing kinetics of biodegradable poly(butylene succinate-co-butylene fumarate) shortsegmented block copolyester. Polym Int 2017; 66, 289-299. https://doi.org/10.1002/pi.5264
Zhang W, Xu Y, Wang PL, Hong J, Liu J, Ji JH, Chu PK. Copolymer P(BS-co-LA) Enhanced Compatibility of PBS/PLA Composite. Journal of Polymers and the Environment 2018; 26, 3060-3068. https://doi.org/10.1007/s10924-018-1180-0
Morales-Huerta JC, Ciulik CB, de Ilarduya AM, Muñoz- Guerra S. Fully bio-based aromatic-aliphatic copolyesters: poly(butylene furandicarboxylate-co-succinate)s obtained by ring opening polymerization. Polym. Chem. 2017; 8, 748- 760. https://doi.org/10.1039/C6PY01879C
Jacquel N, Saint-Loup R, Pascault JP, Rousseau A, Fenouillot F. Bio-based alternatives in the synthesis of aliphatic-aromatic polyesters dedicated to biodegradable film applications. Polymer 2015; 59, 234-242. https://doi.org/10.1016/j.polymer.2014.12.021
Qi JF, Wu J, Chen JY, Wang HP. An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide. Polymer Degradation and Stability 2019; 160, 229-241. https://doi.org/10.1016/j.polymdegradstab.2018.12.031
Totaro G, Paltrinieri L, Mazzola G, Vannini M, Sisti L, Gualandi C, Ballestrazzi A, Valeri S, Pollicino A, Celli A, Di Gioia D, Focarete ML. Electrospun Fibers Containing Bio- Based Ricinoleic Acid: Effect of Amount and Distribution of Ricinoleic Acid Unit on Antibacterial Propertie. Macromol. Mater. Eng. 2015; 300, 1085-1095. https://doi.org/10.1002/mame.201500129