Interlaminar Shear and Tensile Strengths of the Polymer Composites Based on CNT Films

Authors

  • Mohamed Amine Aouraghe College of Textiles, Donghua University, Shanghai 201620, China
  • Ifra Marriam College of Textiles, Donghua University, Shanghai 201620, China
  • Lijun Sun College of Textiles, Donghua University, Shanghai 201620, China
  • Yifan Wang College of Textiles, Donghua University, Shanghai 201620, China
  • Fujun Xu College of Textiles, Donghua University, Shanghai 201620, China
  • Yiping Qiu College of Textiles, Donghua University, Shanghai 201620, China

DOI:

https://doi.org/10.12974/2311-8717.2019.07.5

Keywords:

CNT film composite, PVA, Epoxy, Interlaminar shear strength, Tensile strength.

Abstract

Carbon nanotubes demonstrate excellent electrical, mechanical and thermal properties due to their unique structure. To bring this astonish properties into macroscale, CNTs were assembled into large scale film via FCCVD method. However, the obtained CNT film mechanical properties remained unsatisfactory and leaves room for further improvement. Herein, different mixtures of Epoxy and PVA polymer matrix were incorporated via vacuum assisted resin transfer molding (VARTM) technique into CNT film and successfully enhanced its mechanical properties. The obtained CNT film/Epoxy and CNT film/PVA tensile strength increased by 3.5 and 4.7 times compared to pristine CNT film tensile strength. In addition, polymer matrix compatibility with CNT film was investigated by interlaminar strength method. CNT films/epoxy composite exhibited significantly higher peeling strength (633.7 N/m) compared to those with PVA (70.8 N/m) demonstrating the good affinity of epoxy with CNT film. 

References

J. Di, D. Hu, H. Chen, Z. Yong, M. Chen, Z. Feng, Y. Zhu, Q. Li, Ultrastrong, foldable, and highly conductive carbon nanotube film, ACS Nano 2012; 6(6): 5457-64. https://doi.org/10.1021/nn301321j

AR. Bucossi, CD. Cress, CM. Schauerman, JE. Rossi, I. Puchades, BJ. Landi, Enhanced Electrical Conductivity in Extruded Single-Wall Carbon Nanotube Wires from Modified Coagulation Parameters and Mechanical Processing, ACS Appl Mater Interfaces 2015; 7(49): 27299-305. https://doi.org/10.1021/acsami.5b08668

B. Kumanek, D. Janas, Thermal conductivity of carbon nanotube networks: a review, Journal of Materials Science 2019; 54(10): 7397-7427. https://doi.org/10.1007/s10853-019-03368-0

Y. Jung, YS. Cho, JW. Lee, JY. Oh, CR. Park, How can we make carbon nanotube yarn stronger?, Composites Science and Technology 2018; 166: 95-108. https://doi.org/10.1016/j.compscitech.2018.02.010

N. Behabtu, CC. Young, DE. Tsentalovich, O. Kleinerman, X. Wang, AW. Ma, EA. Bengio, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity, Science 2013; 339(6116): 182-6. https://doi.org/10.1126/science.1228061

X. Zhang, Q. Li, TG. Holesinger, PN. Arendt, J. Huang, PD. Kirven, TG. Clapp, et al. Ultrastrong, Stiff, and Lightweight Carbon-Nanotube Fibers, Advanced Materials 2007; 19(23): 4198-4201. https://doi.org/10.1002/adma.200700776

W. Li, F. Xu, L. Sun, W. Liu, Y. Qiu, A novel flexible humidity switch material based on multi-walled carbon nanotube/polyvinyl alcohol composite yarn, Sensors and Actuators B: Chemical 2016; 230: 528-535. https://doi.org/10.1016/j.snb.2016.02.108

Y. Shao, F. Xu, W. Li, K. Zhang, C. Zhang, R. Li, Y. Qiu, Interfacial strength and debonding mechanism between aerogel-spun carbon nanotube yarn and polyphenylene sulfide, Composites Part A: Applied Science and Manufacturing 2016; 88: 98-105. https://doi.org/10.1016/j.compositesa.2016.05.025

F. Xu, B. Wei, W. Liu, H. Zhu, Y. Zhang, Y. Qiu, In-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decomposition, Journal of Materials Science 2015; 50(24): 8166-8174. https://doi.org/10.1007/s10853-015-9395-0

MA. Aouraghe, F. Xu, X. Liu, Y. Qiu, Flexible, quickly responsive and highly efficient E-heating carbon nanotube film, Composites Science and Technology 2019; 183. https://doi.org/10.1016/j.compscitech.2019.107824

X. Zhang, W. Lu, G. Zhou, Q. Li, Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics, Adv Mater (2019) e1902028. https://doi.org/10.1002/adma.201902028

M. Liu, Z. Cong, X. Pu, W. Guo, T. Liu, M. Li, Y. Zhang, W. Hu, ZL. Wang, High-Energy Asymmetric Supercapacitor Yarns for Self-Charging Power Textiles, Advanced Functional Materials (2019). https://doi.org/10.1002/adfm.201806298

M. Xie, K. Hisano, M. Zhu, T. Toyoshi, M. Pan, S. Okada, O. Tsutsumi, S. Kawamura, C. Bowen, Flexible Multifunctional Sensors for Wearable and Robotic Applications, Advanced Materials Technologies 2019; 4(3). https://doi.org/10.1002/admt.201800626

R. Zhang, Q. Wen, W. Qian, DS. Su, Q. Zhang, F. Wei, Superstrong ultralong carbon nanotubes for mechanical energy storage, Adv Mater 2011; 23(30): 3387-91. https://doi.org/10.1002/adma.201100344

Y. Wang, M. Li, Y. Gu, X. Zhang, S. Wang, Q. Li, Z. Zhang, Tuning carbon nanotube assembly for flexible, strong and conductive films, Nanoscale 2015; 7(7): 3060-6. https://doi.org/10.1039/C4NR06401A

X. Zhang, L. Yang, H. Liu, Enhancements in mechanical and electrical properties of carbon nanotube films by SiC and C matrix bridging, Journal of Materials Science 2018; 53(15): 11027-11037. https://doi.org/10.1007/s10853-018-2385-2

TQ. Tran, Z. Fan, P. Liu, SM. Myint, HM. Duong, Superstrong and highly conductive carbon nanotube ribbons from post-treatment methods, Carbon 2016; 99: 407-415. https://doi.org/10.1016/j.carbon.2015.12.048

Y. Nonoguchi, A. Tani, T. Kitano, T. Kawai, Enhanced thermoelectric properties of semiconducting carbon nanotube films by UV/ozone treatment, Journal of Applied Physics 2019; 126(13). https://doi.org/10.1063/1.5118694

J. Wu, Z. Wang, W. Liu, L. Wang, F. Xu, Bio-Inspired Super Elastic Electro-Conductive Fiber for Wearable Electronics, ACS Appl Mater Interfaces (2019). https://doi.org/10.1021/acsami.9b16051

FX. Wei Li, Wei Liu, Yang Gao, Kun Zhanga,b, Xiaohua Zhang, Yiping Qiu, Flexible strain sensor based on aerogelspun carbon nanotube yarn with a core-sheath structure, Composites Part A 2018; 107-113. https://doi.org/10.1016/j.compositesa.2018.02.024

Y. Li, X. Huang, L. Zeng, R. Li, H. Tian, X. Fu, Y. Wang, WH. Zhong, A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites, Journal of Materials Science 2018; 54(2): 1036-1076. https://doi.org/10.1007/s10853-018-3006-9

FX. Xiaohua Liu, Kun Zhang, Baochun Wei, Zhiqiang Gao, Yiping Qiu, Characterization of enhanced interfacial bonding between epoxy and plasma functionalized carbon nanotube films, Composites Science and Technology 2017; (145): 114- 121. https://doi.org/10.1016/j.compscitech.2017.04.004

H. Yu, D. Cheng, TS. Williams, J. Severino, IM. De Rosa, L. Carlson, RF. Hicks, Rapid oxidative activation of carbon nanotube yarn and sheet by a radio frequency, atmospheric pressure, helium and oxygen plasma, Carbon 2013; 57: 11- 21. https://doi.org/10.1016/j.carbon.2013.01.010

Q. Cheng, J. Wang, J. Wen, C. Liu, K. Jiang, Q. Li, S. Fan, Carbon nanotube/epoxy composites fabricated by resin transfer molding, Carbon 2010; 48(1): 260-266. https://doi.org/10.1016/j.carbon.2009.09.014

T. Ogasawara, SY. Moon, Y. Inoue, Y. Shimamura, Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method, Composites science and technology 2011; 71(16): 1826-1833. https://doi.org/10.1016/j.compscitech.2011.08.009

OK. Park, WY. Kim, SM. Kim, NH. You, Y. Jeong, HS. Lee, BC. Ku, Effect of oxygen plasma treatment on the mechanical properties of carbon nanotube fibers, Materials Letters 2015; 156: 17-20. https://doi.org/10.1016/j.matlet.2015.04.141

Downloads

Published

2019-03-08

How to Cite

Aouraghe, M. A., Marriam, I., Sun, L., Wang, Y., Xu, F., & Qiu, Y. (2019). Interlaminar Shear and Tensile Strengths of the Polymer Composites Based on CNT Films. Journal of Composites and Biodegradable Polymers, 7, 34–39. https://doi.org/10.12974/2311-8717.2019.07.5

Issue

Section

Articles