Preparation and Characterization of Hydroxyapatite/Poly(Ethylene Oxide) Nanocomposite Nanofibers
DOI:
https://doi.org/10.12974/2311-8717.2019.07.4Keywords:
Hydroxyapatite, Poly(ethylene oxide), Nanocomposites, Electrospinning.Abstract
Developing nanofillers incorporated polymer nanofibers (i.e., nanocomposite nanofibers) is an effective approach to achieve functionality and efficiency in nanomaterials applications. In this paper, spindle- or needle-shaped hydroxyapatite (HA) nanoparticles with sizes of ca. 100 x 30 nm were synthesized by a wet chemical method. HA-incorporated poly(ethylene oxide) (PEO) nanocomposite nanofibers were then successfully fabricated via electrospinning aqueous solutions of HA/PEO blends with varied HA contents. Scanning electron microscope and transmission electron microscope observations indicated that if higher HA loadings (e.g., 30%, 50%) were involved, the resultant fiber morphology would be affected by occurring HA aggregates along the fiber axis. The HA nanoparticles were found to aggregate discretely forming raisin-like morphology with their long axis in alignment with the fiber direction. XRD and FTIR results provide evidence of molecular interactions between the nanocrystal HA and PEO, likely because of the formation of hydrogen bondings. With this, it is believed that further development of current HA/PEO nanocomposite nanofibers, biologically mimicking the basic building blocks of the natural bone, may lead to potential applications in repairing hard tissues like bone as well as in developing efficient optoelectronic nanodevices.
References
Y. Zhang, B. Su, J. Venugopal, S. Ramakrishna, CT. Lim, Biomimetic and Bioactive Nanofibrous Scaffolds from Electrospun Composite Nanofibers: A Review, Int J Nanomedicine 2007; 2(4): 1-16.
JY. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys 1998; 20(2): 92-102. https://doi.org/10.1016/S1350-4533(98)00007-1
WJ. Landis, MJ. Song, A. Leith, L. McEwen, BF. McEwen, Mineral and Organic Matrix Interaction in Normally Calcifying Tendon Visualized in Three Dimensions by High-Voltage Electron Microscopic Tomography and Graphic Image Reconstruction, J. Struct. Biol. 1993; 110(1): 39-54. https://doi.org/10.1006/jsbi.1993.1003
D. Reneker, I. Chun, Nanometre diameter fibres of polymer - produced by electrospinning, Nanotechnology 1996; 7(3): 216-223. https://doi.org/10.1088/0957-4484/7/3/009
ZM. Huang, YZ. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 2003; 63(15): 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel?, Adv. Mater 2004; 16(14): 1151-1170. https://doi.org/10.1002/adma.200400719
A. Greiner, J. Wendorff, Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers, Angewandte Chemie International Edition 2007; 46(30): 5670-5703. https://doi.org/10.1002/anie.200604646
HW. Kim, JH. Song, HE. Kim, Nanofiber Generation of Gelatin-Hydroxyapatite Biomimetics for Guided Tissue Regeneration, Adv. Funct. Mater 2005; 15(12): 1988-1994. https://doi.org/10.1002/adfm.200500116
Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, IK. Kang, OH. Kwon, A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material, J. Biosci. Bioeng 2005; 100(1): 43-49. https://doi.org/10.1263/jbb.100.43
HW. Kim, HH. Lee, JC. Knowles, Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration, Journal of Biomedical Materials Research Part A 2006; 79A(3): 643-649. https://doi.org/10.1002/jbm.a.30866
J. Venugopal, P. Vadgama, TSS. Kumar, S. Ramakrishna, Biocomposite nanofibres and osteoblasts for bone tissue engineering, Nanotechnology 2007; 18(5): 1-8. https://doi.org/10.1088/0957-4484/18/5/055101
C. Li, C. Vepari, HJ. Jin, HJ. Kim, DL. Kaplan, Electrospun silk-BMP-2 scaffolds for bone tissue engineering, Biomaterials 2006; 27(16): 3115-3124. https://doi.org/10.1016/j.biomaterials.2006.01.022
KY. Lee, DJ. Mooney, Hydrogels for Tissue Engineering, Chem. Rev 2001; 101(7): 1869-1880. https://doi.org/10.1021/cr000108x
R. Banat, T. Tincer, Study on the properties of crosslinking of poly(ethylene oxide) and hydroxyapatite-poly(ethylene oxide) composite, J. Appl. Polym. Sci 2003; 90(2): 488-496. https://doi.org/10.1002/app.12695
P. Li, D. Bakker, CA. vanBlitterswijk, The bone-bonding polymer Polyactive(R) 80/20 induces hydroxycarbonate apatite formation in vitro, J. Biomed. Mater. Res 1997; 34(1): 79-86. https://doi.org/10.1002/(SICI)1097- 4636(199701)34:1<79::AID-JBM11>3.0.CO;2-K
AK. Gaharwar, SA. Dammu, JM. Canter, CJ. Wu, G. Schmidt, Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles, Biomacromolecules 2011; 12(5): 1641-1650. https://doi.org/10.1021/bm200027z
H. Tsutsumi, Y. Hisha, Y. Shibasaki, Hydroxyapatite- Imidazole-Polyethylene Oxide Composites as an Ionic Conductive Material, Electrochem. Solid State Lett. 8(5) (2005) A237-A239. https://doi.org/10.1149/1.1874653
M. Akao, H. Aoki, K. Kato, Mechanical properties of sintered hydroxyapatite for prosthetic applications, J Mater Sci 1981; 16(3): 809-812. https://doi.org/10.1007/BF00552220
A. Osaka, Y. Miura, K. Takeuchi, M. Asada, K. Takahashi, Calcium apatite prepared from calcium hydroxide and orthophosphoric acid, J. Mater. Sci.-Mater. Med 1991; 2(1): 51-55. https://doi.org/10.1007/BF00701687
F. Chen, ZC. Wang, CJ. Lin, Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials, Mater. Lett 2002; 57(4): 858-861. https://doi.org/10.1016/S0167-577X(02)00885-6
LJ. Kong, Y. Gao, WL. Cao, YD. Gong, NM. Zhao, XF. Zhang, Preparation and characterization of nanohydroxyapatite/ chitosan composite scaffolds, J. Biomed. Mater. Res. Part A 2005; 75A(2): 275-282. https://doi.org/10.1002/jbm.a.30414
MR. Saeri, A. Afshar, M. Ghorbani, N. Ehsani, CC. Sorrell, The wet precipitation process of hydroxyapatite, Mater. Lett 2003; 57(24-25): 4064-4069. https://doi.org/10.1016/S0167-577X(03)00266-0
PN. de Aza, F. Guitian, C. Santos, S. de Aza, R. Cusco, L. Artus, Vibrational Properties of Calcium Phosphate Compounds. 2. Comparison between Hydroxyapatite and β- Tricalcium Phosphate, Chem. Mater 1997; 9(4): 916-922. https://doi.org/10.1021/cm9604266
M. Weinlaender, J. Beumer, EB. Kenney, PK. Moy, F. Adar, Raman microprobe investigation of the calcium phosphate phases of three commercially available plasma-flamesprayed hydroxyapatite-coated dental implants, J. Mater. Sci.-Mater. Med 1992; 3(6): 397-401. https://doi.org/10.1007/BF00701234
A. Ślósarczyk, C. Paluszkiewicz, M. Gawlicki, Z. Paszkiewicz, The FTIR spectroscopy and QXRD studies of calcium phosphate based materials produced from the powder precursors with different CaP ratios, Ceramics International 1997; 23(4): 297-304. https://doi.org/10.1016/S0272-8842(96)00016-8
A. Slosarczyk, Z. Paszkiewicz, C. Paluszkiewicz, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods, J. Mol. Struct 2005; 744-747: 657-661. https://doi.org/10.1016/j.molstruc.2004.11.078
G. Penel, G. Leroy, C. Rey, B. Sombret, JP. Huvenne, E. Bres, Infrared and Raman microspectrometry study of fluorfluor- hydroxy and hydroxy-apatite powders, J. Mater. Sci.- Mater. Med 1997; 8(5): 271-276. https://doi.org/10.1023/A:1018504126866
PN. de Aza, C. Santos, A. Pazo, S. de Aza, R. Cusco, L. Artus, Vibrational Properties of Calcium Phosphate Compounds. 1. Raman Spectrum of β-Tricalcium Phosphate, Chem. Mater. 1997; 9(4): 912-915. https://doi.org/10.1021/cm960425d
I. Yamaguchi, K. Tokuchi, H. Fukuzaki, Y. Koyama, K. Takakuda, H. Monma, J. Tanaka, Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites, J. Biomed. Mater. Res 2001; 55(1): 20-27. https://doi.org/10.1002/1097-4636(200104)55:1<20::AIDJBM30> 3.3.CO;2-6
L. Zhang, YB. Li, AP. Yang, XL. Peng, XJ. Wang, X. Zhang, Preparation and in vitro investigation of chitosan/nanohydroxyapatite composite used as bone substitute materials, J. Mater. Sci.-Mater. Med 2005; 16(3): 213-219. https://doi.org/10.1007/s10856-005-6682-3
RM. Wilson, JC. Elliott, SEP. Dowker, LM. Rodriguez- Lorenzo, Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite, Biomaterials 2005; 26(11): 1317-1327. https://doi.org/10.1016/j.biomaterials.2004.04.038
X. Deng, J. Hao, C. Wang, Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Cadeficient hydroxyapatite nanocrystals, Biomaterials 2001; 22(21): 2867-2873. https://doi.org/10.1016/S0142-9612(01)00031-X
Y. Li, J. Wijn, CPAT. Klein, S. Meer, K. Groot, Preparation and characterization of nanograde osteoapatite-like rod crystals, J. Mater. Sci.-Mater. Med 1994; 5(5): 252-255. https://doi.org/10.1007/BF00122393
YB. Li, CPAT. Klein, J. Wijn, S. Meer, K. Groot, Shape change and phase transition of needle-like nonstoichiometric apatite crystals, J. Mater. Sci.-Mater. Med 1994; 5(5): 263-268. https://doi.org/10.1007/BF00122395
JAS. Bett, LG. Christner, WK. Hall, Hydrogen held by solids. XII. Hydroxyapatite catalysts, J. Am. Chem. Soc 1967; 89(22): 5535-5541. https://doi.org/10.1021/ja00998a003
C. Qiu, X. Xiao, R. Liu, Biomimetic synthesis of spherical nano-hydroxyapatite in the presence of polyethylene glycol, Ceram. Int. 2007; 34(7): 1747-1751. https://doi.org/10.1016/j.ceramint.2007.06.001
J. Duan, X. Huang, E. Wang, PEG-assisted synthesis of ZnO nanotubes, Mater. Lett 2006; 60(15): 1918-1921. https://doi.org/10.1016/j.matlet.2005.12.052
Y. Fujishiro, H. Yabuki, K. Kawamura, T. Sato, A. Okuwaki, Preparation of Needle-Like Hydroxyapatite by Homogeneous Precipitation under Hydrothermal Conditions, J. Chem. Technol. Biotechnol 1993; 57(4): 349-353. https://doi.org/10.1002/jctb.280570409
Y. Dror, W. Salalha, RL. Khalfin, Y. Cohen, AL. Yarin, E. Zussman, Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning, Langmuir 2003; 19(17): 7012- 7020. https://doi.org/10.1021/la034234i
YZ. Zhang, Y. Feng, ZM. Huang, S. Ramakrishna, CT. Lim, Fabrication of Porous Electrospun Nanofibers, Nanotechnology 2006; 17(3): 901-908. https://doi.org/10.1088/0957-4484/17/3/047
F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, Electrospinning of continuous carbon nanotube-filled nanofiber yarns, Adv. Mater 2003; 15(14): 1161-1165. https://doi.org/10.1002/adma.200304955
YC. Nho, Y. Mook Lim, Y. Moo Lee, Preparation, properties and biological application of pH-sensitive poly(ethylene oxide) (PEO) hydrogels grafted with acrylic acid(AAc) using gamma-ray irradiation, Radiat. Phys. Chem 2004; 71(1-2): 239-242. https://doi.org/10.1016/j.radphyschem.2004.03.046
Y. Ji, K. Ghosh, X.Z. Shu, B. Li, JC. Sokolov, GD. Prestwich, RAF. Clark, MH. Rafailovich, Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds, Biomaterials 2006; 27(20): 3782-3792. https://doi.org/10.1016/j.biomaterials.2006.02.037
EM. Guerra, KJ. Ciuffi, HP. Oliveira, V2O5 xerogelpoly( ethylene oxide) hybrid material: Synthesis, characterization, and electrochemical properties, J. Solid State Chem 2006; 179(12): 3814-3823. https://doi.org/10.1016/j.jssc.2006.08.018