Functional PEG Macromers for Biomedical Applications

Authors

  • Fatma Ayhan Mugla Sitki Kocman University, Faculty of Science, Department of Chemistry, Biochemistry Division, Biochemistry and Biomaterials Research Group (BIOMATREG), Mugla, Turkey
  • Hakan Ayhan Mugla Sitki Kocman University, Faculty of Science, Department of Chemistry, Biochemistry Division, Biochemistry and Biomaterials Research Group (BIOMATREG), Mugla, Turkey

DOI:

https://doi.org/10.12974/2311-8717.2017.05.02.3

Keywords:

Biomaterials, hydrogel, poly(ethylene glycol)-diacrylate, poly(ethylene glycol)-multiacrylate, photo polymerization.

Abstract

Biomedical technology combines medicine and technology to diagnose, replace damaged site or regenerate tissue, and delivery of bioactive agent in a temporally controlled manner. Modified and unmodified natural and synthetic polymeric biomaterialsare currently formed in various structural shapes and chemical ingredients to overcome challenges. The recent developments in engineered PEG based hydrogel materials shows a great attractive research area due to its relatively high biocompatibility. The synthetic acrylated PEG or PEG-diacrylate and –multiacrylate monomers are the main backbone of photoinitiated radical polymerization of acrylates and polyesters used in non-degradable and degradable biomaterials. The physicochemical properties also enable to reinforce natural polymers structural characteristics. Recently published different classes of materials comprised of acrylated PEG macromers are summarized in this review. 

References

Decker C. UV- radiation curing chemistry. Pigment and Resin Technology 2001; 5: 278-286. https://doi.org/10.1108/03699420110404593

Samorezov JE and Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Del Rev 2015; 84: 45-67. https://doi.org/10.1016/j.addr.2014.11.018

Jana S, Simari RD, Spoon DB and Lerman A. Drug delivery in aortic valve tissue engineering. J Control Release 2014; 196: 307-323. https://doi.org/10.1016/j.jconrel.2014.10.009

Jana S, Lerman A. Bioprinting a cardiac valve. Biotechnol Adv 2015; 33: 1503-1521. https://doi.org/10.1016/j.biotechadv.2015.07.006

Hacker MC and Mikos AG. In Principles of Regenerative Medicine (Second Edition) 2011.

Hoffman AS. Hydrogels for biomedical applications. Adv Drug Del Rev 2012; 64: 18-23. https://doi.org/10.1016/j.addr.2012.09.010

Dhandayuthapani B, Yoshida Y, Maekawa T and Kumar DS. Polymeric Scaffolds in Tissue Engineering Application: A Review. Hindawi Publishing Corporation. Int J Polym Sci 2011; Article ID 290602, 19 pagesdoi: 10. 1155/2011/290602

Chan BP and Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 2008; 17(Suppl 4): S467-S479. https://doi.org/10.1007/s00586-008-0745-3

Theocharis AD, Skandalis SS, Gialeli C and KaramanosNK. Extracellular matrix structure. Adv Drug Del Rev 2016; 97: 4-27. https://doi.org/10.1016/j.addr.2015.11.001

Almany L and Seliktar D. Biosynthetic hydrogel scaffolds made from fibrinojen and polyethylene glycol for 3D cell cultures. Biomaterials 2005; 26: 2467-2477. https://doi.org/10.1016/j.biomaterials.2004.06.047

Arcaute K, Mann B and Wicker R. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater 2010; 6: 1047-1054. https://doi.org/10.1016/j.actbio.2009.08.017

Bailey BM, Fei R, Munoz-Pinto D, Hahn MS and Grunlan MA. PDMSstar–PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds. Acta Biomater 2012; 8: 4324-4333. https://doi.org/10.1016/j.actbio.2012.07.034

Cheng YL and Chen F. Preparation and characterization of photocured poly (ϵ-caprolactone) diacrylate /poly (ethylene glycol) diacrylate / chitosan for photopolymerization-type 3D printing tissue engineering scaffold application. Mater Sci Eng C 2017; 81: 66-73. https://doi.org/10.1016/j.msec.2017.07.025

Ma G, Zhang X, Han J, Song G and Nie J. Photopolymeriable chitosan derivative prepared by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA). Int J BiolMacromol 2009; 45: 499-503. https://doi.org/10.1016/j.ijbiomac.2009.08.007

Zhang X, Yang D and Nie J. Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. Int J Biol Macromol 2008; 43: 456-462. https://doi.org/10.1016/j.ijbiomac.2008.08.010

Correia TR, Ferreirab P, Vazb R, Alvesb P, Figueiredob MM, et al. Development of UV cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering. Int J Biol Macromol 2016; 93: 1539-1548. https://doi.org/10.1016/j.ijbiomac.2016.05.045

Chan KMC, Li RH, Chapman JW, Trac EM, Kobler JB, et al. Functionalizable hydrogel microparticles of tunable size and stiffness for soft-tissue filler applications. Acta Biomater 2014; 10: 2563-2573. https://doi.org/10.1016/j.actbio.2014.02.021

Dorsey TB, Grath A, Wang A, Xu C, Hong Y, et al. Evaluation photochemistry reaction kinetics to pattern bioactive proteins on hydrogels for biological applications. Bioactive Materials 2017; xxx: 1-10. https://doi.org/10.1016/j.bioactmat.2017.05.005

Drira Z and Yadavalli VK. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy. J Mech Behav Biomed Mater 2013; 18: 2028. https://doi.org/10.1016/j.jmbbm.2012.09.015

Durst CA, Cuchiara MP, Mansfield EG, West JL and Grande- Allen KJ. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater 2011; 7: 2467-2476. https://doi.org/10.1016/j.actbio.2011.02.018

Hahn MS, Taite LJ, Moon JJ, Rowland MC, Ruffino KA, et al. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 2006; 27: 2519-2524. https://doi.org/10.1016/j.biomaterials.2005.11.045

Hume SL, Hoyt SM, Walker JS, Sridhar BV, Ashley JF, et al. Alignment of multi-layered muscle cells within threedimensional hydrogel Macrochannels. Acta Biomater 2012; 8: 2193-2202. https://doi.org/10.1016/j.actbio.2012.02.001

Kızılel S, Sawardecker E, Teymour F and Pe´rez-Luna HV. Sequential formation of covalently bonded hydrogel multi layers through surface initiated photo polymerization. Biomaterials 2006; 27: 1209-1215. https://doi.org/10.1016/j.biomaterials.2005.08.025

Liang Y, Bar-Shir A, Song X, Gilad AA, Walczak P, et al. Label-free imaging of gelatin-containing hydrogel scaffolds. Biomaterials 2015; 42: 144-150. https://doi.org/10.1016/j.biomaterials.2014.11.050

Lin H, Zhang D, Alexander PG, Yang G, Tan J, et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 2013; 34: 331-339. https://doi.org/10.1016/j.biomaterials.2012.09.048

Markert CD, Guo X, Skardala A, Wanga Z, Bharadwaja S, et al. Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. J Mech Behav Biomed Mater 2013; 27: 115-127. https://doi.org/10.1016/j.jmbbm.2013.07.008

Miller JS, Shen CJ, Legant WR, Baranski JD, Blakely BL, et al. Bioactive hydrogels made from step-growth derived PEG– peptide macromers. Biomaterials 2010; 31: 3736-3743. https://doi.org/10.1016/j.biomaterials.2010.01.058

Pritchard CD, O'Shea TM, Siegwart DJ, Calo E, Anderson DG, et al. An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials 2011; 32: 587-597. https://doi.org/10.1016/j.biomaterials.2010.08.106

Roberts JJ and Bryant SJ. Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Bio materials 2013; 34: 9969-9979. https://doi.org/10.1016/j.biomaterials.2013.09.020

Shu XS, Liu Y, Palumbo FS, Luo Y and Prestwich GD. In situ crosslink able hyaluronan hydrogels for tissue engineering. Biomaterials 2004; 25: 1339-1348. https://doi.org/10.1016/j.biomaterials.2003.08.014

Skardal A, Zhang J and Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 2010; 31: 6173-6181. https://doi.org/10.1016/j.biomaterials.2010.04.045

Bae WG, Kim J, Choung YH, Chung Y, Suh KY, et al. Guided extra cellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata. Data in Brief 2015; 5: 203-207. https://doi.org/10.1016/j.dib.2015.08.021

Bae WG, Jangho Kim, Yun-Hoon Choung, Yesol Chung, Kahp Y Suh, et al. Bio-inspired configurable multiscale extra cellular matrix-like structures for functional alignment and guided orientation of cells. Biomaterials 2015; 69: 158-164. https://doi.org/10.1016/j.biomaterials.2015.08.006

Lee HJ, Lee JS, Chansakul T, Yu C, Elisseeff JH, Yub SM, et al. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials 2006; 27: 5268-5276. https://doi.org/10.1016/j.biomaterials.2006.06.001

Tan F, Liu J, Liu M and Wang J. Charge density is more important than charge polarity in enhancing osteoblast-like cell attachment on poly(ethylene glycol)-diacrylate hydrogel. Materials Science and Engineering C 2017; 76: 330-339. https://doi.org/10.1016/j.msec.2017.03.051

Tu X, Wang L, Wei J, Wang B, Tang Y, Shi J, et al. 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation. Microelectronic Engineering 2016; 158: 30-34. https://doi.org/10.1016/j.mee.2016.03.007

Dikovsky D, Bianco-Peled H and Seliktar D. Defining the Role of Matrix Compliance and Proteolysis in Three- Dimensional Cell Spreading and Remodeling. Biophysical Journal 2008; 94: 2914-2925. https://doi.org/10.1529/biophysj.107.105841

Elbert DL, Pratt AB, Lutolf MP, Halstenberg S and Hubbell JA. Protein delivery from materials formed by self-selective conjugate addition reactions. Journal of Controlled Release 2001; 76: 11-25. https://doi.org/10.1016/S0168-3659(01)00398-4

Wetering P, Metters AT, Schoenmakers RG and Hubbell JA. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. J Control Release 2005; 102: 619-627. https://doi.org/10.1016/j.jconrel.2004.10.029

Scott RA and Peppas NA. Highly crosslinked, PEGcontaining copolymers for sustained solute delivery. Biomaterials 1999; 20: 1371-1380. https://doi.org/10.1016/S0142-9612(99)00040-X

Browning MB, Cereceres SN, Luong PT and Cosgriff- Hernandez EM. Determination of the in vivo degradation mechanism of PEGDA hydrogels. J Biomed Mater Res A 2014; 102(12): 4244-4251.

Khandaker M, Orock A, Tarantini S, White J and Yasar O. Biomechanical performances of networked polyethylene glycol diacrylate: Effect of photoinitiator concentration, temperature, and incubation time. Hindawi Publishing Corporation Inter J of Biomat 2015; 2016, Article ID 3208312.

Berdichevski A, Shachaf Y, Wechsler R and Seliktar D. Protein composition alters in vivo resorption of PEG-based hydrogel as monitored by contrast-enhanced MRI. Biyomaterials 2015; 42: 1-10. https://doi.org/10.1016/j.biomaterials.2014.11.015

Patil VS, Dziubla TD and Kalika DS. Static and dynamic properties of biodegradable poly(antioxidant β-amino ester) networks based on incorporation of curcumin multiacrylate. Polymer 2015; 75: 88-96. https://doi.org/10.1016/j.polymer.2015.08.034

Goyanes A, Det-Amornrat U, Wang J, Basit AW and Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricatingpersonalized topical drug delivery systems. J Control Release 2016; 234: 41-48. https://doi.org/10.1016/j.jconrel.2016.05.034

Sun G and Chu CC. Synthesis, characterization of biodegradable dextran–allylisocyanate–ethylamine/ polyethylene glycol–diacrylate hydrogels and their in vitro release of albumin. Carbohydr Polym 2006; 65: 273-287. https://doi.org/10.1016/j.carbpol.2006.01.015

Weiner AA, Shuck DM, Bush JR and Shastri VP. In vitro degradation characteristics of photo crosslinked anhydride systems for bone augmentation applications. Biomaterials 2007; 28: 5259-5270. https://doi.org/10.1016/j.biomaterials.2007.08.022

Weiner AA, Bock EA, Gipson ME and Shastri VP. Photocrosslinked anhydride systems for long-term protein release. Biomaterials 2008; 29: 2400-2407. https://doi.org/10.1016/j.biomaterials.2008.01.013

Fathi A, Lee S, Zhong X, Hon N, Valtchev P, et al. Fabrication of interpenetrating polymer network to enhance the biological activity of synthetic hydrogels. Polymer 2013; 54: 5534-5542. https://doi.org/10.1016/j.polymer.2013.08.052

Foster E, You J, Siltanen C, Patel D, Haque A, et al. Heparin hydrogel sandwich cultures of primary hepatocytes. Eur Polym J 2015; 72: 726-735. https://doi.org/10.1016/j.eurpolymj.2014.12.033

Freeman JW, Woods MD, Cromer DA, Ekwueme EC, Andric T, et al. Evaluation of a hydrogel–fiber composite for ACL tissue engineering. J Biomech 2011; 44: 694-699. https://doi.org/10.1016/j.jbiomech.2010.10.043

Wattamwar PP, Biswal D, Cochran DB, Lyvers AC, Eitel RE, et al. Synthesis and characterization of poly(antioxidant β- amino esters)for controlled release of polyphenolic antioxidants. Acta Biomater 2012; 8: 2529-2537. https://doi.org/10.1016/j.actbio.2012.03.022

McBath RA and Shipp DA. Swelling and degradation of hydrogels synthesized with degradable poly(β-amino ester) crosslinkers. Polym Chem 2010; 1: 860-865. https://doi.org/10.1039/c0py00074d

Meenach SA, Otu CG, Anderson KW and Hilt JZ. Controlled synergistic delivery of paclitaxel and heat from poly(-amino ester)/iron oxide-based hydrogel nanocomposites. IntJ Pharm 2012; 427: 177-184. https://doi.org/10.1016/j.ijpharm.2012.01.052

Hawkins AM, Tolbert ME, Newton B, Milbrandt TD, Puleo DA, et al. Tuning biodegradable hydrogel properties via synthesis procedure. Polymer 2013; 54: 4422-4426. https://doi.org/10.1016/j.polymer.2013.06.010

Kaihara S, Matsumura S and Fisher JP. Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur J Pharm and Biopharm 2008; 68: 67-73. https://doi.org/10.1016/j.ejpb.2007.05.019

Lee HJ, Sen A, Bae S, Lee JS and Webb K. Poly(ethylene glycol) diacrylate / hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration. Acta Biomater 2015; 14: 43-52. https://doi.org/10.1016/j.actbio.2014.12.007

Liang Y, Jensen TW, Roy EJ, Cha C, DeVolder RJ, Kohman RE, et al. Tuning the non-equilibrium state of a drugencapsulated poly(ethylene glycol)hydrogel for stem and progenitor cell mobilization. Biomaterials 2011; 32: 2004- 2012. https://doi.org/10.1016/j.biomaterials.2010.11.021

Liao H, Munoz-Pinto D, Qu X, Hou Y, Grunlan MA and Hahn MS. Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype. Acta Biomater 2008; 4: 1161-1171. https://doi.org/10.1016/j.actbio.2008.04.013

Lin CC, Raza A and Shih H. PEG hydrogels formed by thiolene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 2011; 32: 9685-9695. https://doi.org/10.1016/j.biomaterials.2011.08.083

Miller JS, Shen CJ, Legant WR, Baranski JD, Blakely BL, et al. Bioactive hydrogels made from step-growth derived PEG– peptide macromers. Biomaterials 2010; 31: 3736-3743. https://doi.org/10.1016/j.biomaterials.2010.01.058

Sokic S and Papavasiliou G. FGF-1 and proteolytically mediated cleavage site presentation influence threedimensional fibroblast invasion in biomimetic PEGDA hydrogels. Acta Biomater 2012; 8: 2213-2222. https://doi.org/10.1016/j.actbio.2012.03.017

Thankam FG and Muthu J. Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability. J Mech Behav Biomed Mater 2014; 35: 111-122. https://doi.org/10.1016/j.jmbbm.2014.03.010

Wong YS, Salvekar AV, Zhuang KD, Liu H, Birch WR, et al. Bioabsorbable radiopaque water-responsive shape memory embolization plug for temporary vascular occlusion. Biomaterials 2016; 102: 98-106. https://doi.org/10.1016/j.biomaterials.2016.06.014

Xu K, Fu Y, Chung WJ, Zheng X, Cui Y, et al. Thiol-enebased biological / synthetic hybrid biomatrix for 3-D living cell culture. Acta Biomater 2012; 8: 2504-2516. https://doi.org/10.1016/j.actbio.2012.03.049

Yonet Tanyeri N, Rich MH, Lee M, Lai MH, Jeong JH, DeVolder RJ, et al. The spatiotemporal control of erosion and molecular release from micropatterned poly(ethylene glycol)- based hydrogel. Biomaterials 2013; 34: 8416-8423. https://doi.org/10.1016/j.biomaterials.2013.07.026

Zhang X, Xu B, Puperi DS, Yonezawa AL, Wu Y, Tseng H, et al. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering. Acta Biomater 2015; 14: 11-21. https://doi.org/10.1016/j.actbio.2014.11.042

Zhao X, Irvine SA, Agrawal A, Cao Y, Lim PQ, Tan SY, et al. 3D patterned substrates for bioartificial blood vessels – The effect of hydrogels on aligned cells on a biomaterial surface. Acta Biomater 2015; 26: 159-168. https://doi.org/10.1016/j.actbio.2015.08.024

Zhong C, Wu J, Reinhart-King CA and Chu CC. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan–polyethylene glycol diacrylate hybrid hydrogels. Acta Biomater 2010; 6: 3908-3918. https://doi.org/10.1016/j.actbio.2010.04.011

Lee KY and Yuk SH. Polymeric protein delivery systems. Science Direct Prog Polym Sci 2007; 32: 669-697. https://doi.org/10.1016/j.progpolymsci.2007.04.001

Qu J, Zhao X, Ma PX and Guo B. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater 2017; 58: 168-180. https://doi.org/10.1016/j.actbio.2017.06.001

Maleki L, Edlund U and Albertsson AC. Synthesis of full interpenetrating hemicellulose hydrogel networks. Carbohydr Polym 2017; 170: 254-263. https://doi.org/10.1016/j.carbpol.2017.04.091

Rufaihah AJ, Johari NA, Vaibavi SR, Plotkin M, Thien DTD, Kofidis T, et al. Dual delivery of VEGF and ANG-1 in ischemic hearts using an injectable hydrogel. Acta Biomater 2017; 48: 58-67. https://doi.org/10.1016/j.actbio.2016.10.013

Schesny MK, Monaghan M, Bindermann AH, Freund D, Seifert M, et al. Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels. Biomaterials 2014; 35: 7180-7187. https://doi.org/10.1016/j.biomaterials.2014.04.116

Ayhan F and Özkan S. Gentamicin release from photopolymerized PEG Diacrylate and pHEMA hydrogel discs and their in vitro antimicrobial activities. Drug Delivery 2007; 14: 433-439. https://doi.org/10.1080/10717540701202911

Ayhan F, Demirci S and Ayhan H. Poly(ethylene glycol)/gelatin composite hydrogels for drug delivery. J Compos Biodegradable Polym 2014; 2: 36-45.

Soto-Quintero A, Meneses-Acosta A and Romo-Uribe A. Tailoring the viscoelastic, swelling kinetics and antibacterial behavior of poly(ethylene glycol)-based hydrogels with polycaprolactone. European Polymer Journal 2015; 70: 1-17. https://doi.org/10.1016/j.eurpolymj.2015.06.028

Vernon BL, Fusaro F, Borden B and Roy KH. Partitioncontrolled progesterone release from water borne, in situgelling materials. Int J Pharm 2004; 274: 191-200. https://doi.org/10.1016/j.ijpharm.2004.01.017

Yang F, Williams CG, Wang DA, Lee H, Manson PN, et al. The effect of incorporating RGD adhesive peptide inpolyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 2005; 26: 5991- 5998. https://doi.org/10.1016/j.biomaterials.2005.03.018

Ayhan H and Ayhan F. Photo crosslinked poly(ethylen glycol) hydrogels for controlled drug delivery. Turk J Biochem 2014; 39(4): 403-415.

Sökmen N, Uysal S, Ayhan F, Özyazıcı M and Ayhan H. Photopolymerized poly(ethylene glycol) diacrylate hydrogels for controlled release of ketoprofen. Hacettepe J Biol Chem 2009; 37 (4): 337-343.

Sökmen N, Bican F, Ayhan F and Ayhan H. Chelating Agent effect on the release of gentamicin from PEG-DA hydrogels. Hacettepe J Biol Chem 2008; 36(4): 347-352.

Deegan DB, Zimmerman C, Skardal A, Atala A and Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. journal of the mechanical behavior of biomedical materials. J Mech Behav Biomed Mater 2016; 55: 87-103. https://doi.org/10.1016/j.jmbbm.2015.10.016

Steinhilber D, Seiffert S, Heyman JA, Paulus F, Weitz DA, et al. Hyperbranched polyglycerols on the nanometer and micrometer scale. Biomaterials 2011; 32: 1311-1316. https://doi.org/10.1016/j.biomaterials.2010.10.010

Bridges AW, Singh N, Burns KL, Babensee E, Lyon LA, et al. Reduced acute inflammatory responses to microgel conformal coatings. Biomaterials 2008; 29: 4605-4615. https://doi.org/10.1016/j.biomaterials.2008.08.015

Hu X, Wang Y, Zhang L and Xu M. Morphological and mechanical properties of tannic acid / PAAm semi-IPN hydrogels for cell adhesion. Polym Test 2017; 61: 314-323. https://doi.org/10.1016/j.polymertesting.2017.05.034

Jiang P, Mao Z and Gao C. Combinational effect of matrix elasticity and alendronate density on differentiation of rat mesenchymal stem cells. Acta Biomater 2015; 19: 76-84. https://doi.org/10.1016/j.actbio.2015.03.018

Klejn D, Luliński P and Maciejewska D. Desorption of 3,3′- diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity. Mater Sci Eng C 2015; 56: 233-240. https://doi.org/10.1016/j.msec.2015.06.016

Sung SJ, Jung EA, Sim K, Kim DH and Cho KY. Structure control of lattice-patterned liquid crystals–polymer composites prepared by polarization-selective UV-curing through the addition of a fluorinated acrylate monomer. Micro electron Eng 2013; 103: 42-48. https://doi.org/10.1016/j.mee.2012.09.010

Koh WG and Pishko M. Immobilization of multi-enzyme micro reactors inside microfluidic devices. Senso Actuators B 2005; 106: 335-342. https://doi.org/10.1016/j.snb.2004.08.025

Kwak NS, Yang JR, Hwang CW and Hwang TS. The effect of a molecular weight and an amount of PEGDA (poly(ethyleneglycol)diacrylate) on a preparation of sodium methallyl sulfonate-co-PEGDA microspheres and sorption behavior of Co(II). Chem Eng J 2013; 223: 216-223. https://doi.org/10.1016/j.cej.2013.03.028

Lee NY, Jung YK and Park HG. On-chip colorimetric biosensor based on poly diacetylene (PDA) embedded in photopolymerized poly(ethylene glycol)diacrylate (PEG-DA) hydrogel. Biochem Eng J 2006; 29: 103-108. https://doi.org/10.1016/j.bej.2005.02.025

Dong Y, Hassan W, Zheng Y, Saeed AO, CaoH, Tai H, et al. Thermo responsive hyper branched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel. J Mater Sci Mater Med 2012; 23: 25-35. https://doi.org/10.1007/s10856-011-4496-z

Don TM, Chen CC, Lee CK, Cheng WY and Cheng LP. Preparation and antibacterial test of chitosan/PAA/PEGDA bi-layer composite membranes. J Biomater Sci Polymer Edn 2005; 16(12): 1503-1519. https://doi.org/10.1163/156856205774576718

Jung S and Yi H. Fabrication of chitosan-poly(ethylene glycol) hybrid hydrogel micro particles via replica molding and its application toward facile conjugation of bio molecules. Langmuir 2012; 28: 17061-17070. https://doi.org/10.1021/la303567p

Ayhan F, Gülsu A and Ayhan H. PEG/gelatin composite hydrogels as a support of enzyme immobilization. Hacettepe J Biol and Chem 2014; 42(3): 343-350.

Downloads

Published

2017-11-19

How to Cite

Ayhan, F., & Ayhan, H. (2017). Functional PEG Macromers for Biomedical Applications. Journal of Composites and Biodegradable Polymers, 5(2), 48–61. https://doi.org/10.12974/2311-8717.2017.05.02.3

Issue

Section

Articles