Relaxation Modeling of PEO-b-PCL and its Component Polymers with PVPh at the Air/Water Interface

Authors

  • Hui-Ting Pan Department of Chemical Engineering, National United University, Miao-Li, Taiwan 360, R.O.C.
  • Wen-Ping Hsu Department of Chemical Engineering, National United University, Miao-Li, Taiwan 360, R.O.C.

DOI:

https://doi.org/10.12974/2311-8717.2020.08.3

Keywords:

Relaxation, Temperature, PEO-b-PCL, PVPh.

Abstract

The objective of this research was to find out the effects of structure of polyethylene oxide-block-polycaprolactone (PEO-b-PCL) and its component polymers and temperature on the iso-baric relaxation behaviors of mixed monolayers with poly(vinyl phenol). Iso-baric relaxation experiments of mixed monolayers at the air/water interface were investigated at different temperatures (10˚C, 25˚C and 40˚C). It was shown that most of the area relaxation process of mixed monolayers could be well represented by a model considering the nucleation and growth mechanisms. The characteristic exponent x values were found to be slightly temperature dependent. The kx values were detected to decrease with increasing temperature. When PVPh was added into the most unstable PEO, the mixed monolayer films exhibited a remarkably improved stable relaxation behavior than PCL( or PEO-b-PCL ). The stabilization behavior was likely caused by the PVPh-H2O-PEO interaction. There were likely less PVPh-H2O-PCL interaction since PCL interacted with PVPh favorably. 

References

Crisp DJ. J Colloid Sci 1946; 1: 49. https://doi.org/10.1016/0095-8522(46)90006-2

Crisp DJ. J Colloid Sci 1946; 1: 161. https://doi.org/10.1016/0095-8522(46)90014-1

Stroeve P, Srinivasan MP, Higgins BG, Kowel ST. Thin Solid Films 1987; 146: 209. https://doi.org/10.1016/0040-6090(87)90223-9

Baglioni P, Dei L, Puggelli M. Colloid Polym Sci 1985; 283 : 266. https://doi.org/10.1007/BF01415511

Gabrielli G, Puggelli M, Faccioli R. J Colloid Interface Sci 1972; 11: 63. https://doi.org/10.1016/0021-9797(72)90086-0

Gabrielli G, Puggelli M, Baglioni P. J Colloid Interface Sci 1982; 86: 485. https://doi.org/10.1016/0021-9797(82)90094-7

Morioka T, Kawaguchi M. Langmuir 2011; 27: 8672. https://doi.org/10.1021/la201381t

Aiba N, Sasaki Y, Kumak J. Langmuir 2010; 26: 12703. https://doi.org/10.1021/la1018289

Bernardini C, Stoyanov SD, Stuart MAC, Arnaudov LN, Leermakers FAM. Langmuir 2010; 26: 11850. https://doi.org/10.1021/la101003c

Seo Y, Cho CY, Hwangbo M, Choi HJ, Hong SM. Langmuir 2008; 24: 2381. https://doi.org/10.1021/la702745w

Jheng KT, Hsu WP. J Appl Polym Sci 2011; 120: 2615. https://doi.org/10.1002/app.33470

Logan JL, Masse P, Gnanou Y, Taton D, Duran RS. Langmuir 2005; 21: 7380. https://doi.org/10.1021/la050787c

Devereaux CA, Baker SM. Macromolecules 2002; 35: 1921. https://doi.org/10.1021/ma011319m

Noskov BA, Akentiev AV, Miller R. J Colloid Interface Sci 2002; 247: 117. https://doi.org/10.1006/jcis.2001.8121

Cox JK, Yu K, Constantine B, Eisenberg A, Lennox RB. Langmuir 1999; 15: 7714. https://doi.org/10.1021/la9901940

Baker SM, Leach KA, Devereaux CE, Gragson DE. Macromolecules 2000; 33: 5432. https://doi.org/10.1021/ma992029x

Hosoi AE, Kogan D, Devereaux CE, Bernoff AJ, Baker SM. Phys Rev Lett 2005; 95: 037801. https://doi.org/10.1103/PhysRevLett.95.037801

Monroy F, Ortega F, Rubio RG, Ritacco H, Langevin D. Phys Rev Lett 2005; 95: 056103. https://doi.org/10.1103/PhysRevLett.95.056103

Neumann AW, Good PJ. Surface and Colloid Science, Volume II, Plenum, New York, 1979.

Jheng KT, Hsu WP. J Appl Polym Sci 2012; 125: 1986. https://doi.org/10.1002/app.35456

Jheng KT, Hsu WP. J Appl Polym Sci 2012; 126: E267. https://doi.org/10.1002/app.36828

Kim HC, Arick DQ, Won YY. Langmuir 2018; 34: 4874. https://doi.org/10.1021/acs.langmuir.8b00566

Lee J, Pan J, Chun J, Won YY. J Colloid & Interface Sci 2020; 566: 304. https://doi.org/10.1016/j.jcis.2020.01.080

Pan HT; Hsu WP. J Composites and Biodegrad Polym 2019; 7: 8.

Vollhardt D, Retter U. J Phys Chem 1991; 95: 3723. https://doi.org/10.1021/j100162a052

Vollhardt D, Retter U, Sigel S. Thin Solid Films 1991; 199: 189. https://doi.org/10.1016/0040-6090(91)90065-6

Vollhardt D, Retter U. Langmuir 1992; 8: 309. https://doi.org/10.1021/la00037a056

Avrami M. J Chem Phys 1939; 7: 1103. https://doi.org/10.1063/1.1750380

Avrami M. J Chem Phys 1940; 8: 212. https://doi.org/10.1063/1.1750631

Avrami M. J Chem Phys 1941; 9: 177. https://doi.org/10.1063/1.1750872

Qu-Yang W, Weis M, Manaka T, Iwamoto M. J Chem Phys 2011; 134: 154709. https://doi.org/10.1063/1.3581890

Wojciechowski K, Grigoriev D, Ferdani R, Gokel GW. Langmuir 2006; 22: 8409. https://doi.org/10.1021/la0609928

Downloads

Published

2020-06-06

How to Cite

Pan, H.-T., & Hsu, W.-P. (2020). Relaxation Modeling of PEO-b-PCL and its Component Polymers with PVPh at the Air/Water Interface. Journal of Composites and Biodegradable Polymers, 8, 17–27. https://doi.org/10.12974/2311-8717.2020.08.3

Issue

Section

Articles