Fracture Properties and Toughening Mechanisms of Biodegradable Poly(L-lactic acid)/Poly(e-caprolactone) Polymer Blend
DOI:
https://doi.org/10.12974/2311-8717.2018.06.1Keywords:
Bioabsorbable polymer, Polymer blend, Ductile Fracture, Fracture energy absorption.Abstract
PLLA/PCL polymer blends with different PCL contents were fabricated to examine the effect of PCL content on the bending mechanical properties of the blend. Three-point bending tests of beam specimens 5 mm thick were performed at both quasi-static and impact loading-rates, and then bending mechanical properties such as bending modulus, strength and fracture absorbed energy were evaluated. It was found that the modulus and strength decreased as PCL content increased, while the fracture absorbed energy tended to increase with increase of PCL content and was optimized with 15% PCL. Scanning electron microscopy of fracture surfaces and polarizing optical microscopy of tensile damage regions were also carried out to investigate the fracture mechanism of PLLA/PCL blend. It was found that the primary mechanisms involved in the bending fracture of PLLA/PCL blend were initiation of dense craze-like damage and following ductile deformation of the matrix. The model I fracture properties of PLLA/PCL were also evaluated and compared with those of pure PLLA. It was found that the fracture properties were dramatically improved by PCL blending and the primary toughening mechanisms were the aggregation formation of craze-like micro-damages in the process-zone with rough formation of fracture surface.
References
Higashi S, Tamamoto T, Nakamura T, Ikada Y, Hyon SH, Jamshidi K. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials 1986; 7(3): 183-187. https://doi.org/10.1016/0142-9612(86)90099-2
Ikada Y, Shikinami Y, Hara Y, Tagawa M, Fukada E. Enhancement of bone formation by drawn poly(L-lactide). Journal of Biomedical Materials Research 1996; 30(4): 553- 558. https://doi.org/10.1002/(SICI)1097- 4636(199604)30:4<553::AID-JBM14>3.0.CO;2-I
Mohanty AK, Misra M, Hinrichsen G. Macromol Mater Eng 2000; 276/277: 1. https://doi.org/10.1002/(SICI)1439- 2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
Shafer BL, Simonian PT. Broken poly-L-lactic acid interference screw after ligament reconstruction. Arthroscopy 2002; 18(7): E35. https://doi.org/10.1053/jars.2002.32197
Kosaka M, Uemura F, Tomemori S, Kamiishi H. Scanning electron microscopic observations of ‘fractured’ biodegradable plates and screws. Journal of Cranio- Maxillofacial Surgery 2003; 31(1): 10-14. https://doi.org/10.1016/S1010-5182(02)00166-X
Todo M, Shinohara N, Arakawa K. Effects of Crystallization and Loading-rate on the Mode I Fracture Toughness of Biodegradable Poly(lactic acid). Journal of Materials Science Letters 2002; 21: 1203-1206. https://doi.org/10.1023/A:1016520518959
Park SD, Todo M, Arakawa K. Effect of Annealing on the Fracture Toughness of Poly(lactic acid). Journal of Materials Science 2004; 39: 1113-1116. https://doi.org/10.1023/B:JMSC.0000012957.02434.1e
Park SD, Todo M, Arakawa K. Effect of annealing on fracture mechanism of biodegradable poly(lactic acid). Key Engineering Materials 2004; 261-263: 105-110. https://doi.org/10.4028/www.scientific.net/KEM.261-263.105
Park SD, Todo M, Arakawa K, Koganemaru M. Effect of crystallinity and loading-rate on mode I fracture behavior of poly(lactic acid). Polymer 2006; 47: 1357-1363. https://doi.org/10.1016/j.polymer.2005.12.046
Todo M, Takahashi J, Watanabe H, Nakamoto J, Arakawa K. Effect of Loading-rate on fracture micromechanism of methylemethacrylate-butadiene-styrene polymer blend. Polymer 2006; 47: 4824. https://doi.org/10.1016/j.polymer.2006.04.042
Tsuji H, Ikada Y. Blends of aliphatic polyesters. I. Physical properties and morphologies of solution-cast blends from poly(DL-lactide) and poly(ε-caprolactone). Journal of Applied Polymer Science 1996; 60(13): 2367-2375. https://doi.org/10.1002/(SICI)1097- 4628(19960627)60:13<2367::AID-APP8>3.0.CO;2-C
Tsuji H, Ikada Y. Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(L-lactide) and poly(ε- caprolactone) in phosphate-buffered solution. Journal of Applied Polymer Science 1998; 67(3): 405-415. https://doi.org/10.1002/(SICI)1097- 4628(19980118)67:3<405::AID-APP3>3.0.CO;2-Q
Broz ME, VanderHart DL, Washburn NR. Structure and mechanical properties of poly(D,L-lactide acid)/poly(epsiloncaprolactone) blends. Biomaterials 2003; 24(23): 4181-4190. https://doi.org/10.1016/S0142-9612(03)00314-4
Liangliang L, Defeng W, Ming Z, Weidong Z. Fabrication of polylactide/poly(ε-caprolactone) blend fibers by electrospinning: morphology and orientation. Indusgtrial & Engineering Chemistry Research 2012; 51(9): 3682-3691. https://doi.org/10.1021/ie2028969
Tatiana P, Antonio G, Paulo B. Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications. Chemical Engineering Transactions 2013; 32: 1645-1650.
Song ZJ, Huang XL, Lu XL, Lv QQ, Xu N, Pang SJ, Pan LS, Li T. Improvement of microstructures and properties of poly(lactic acid)/poly(ε-caprolactone) blends compatibilized with polyoxymethylene. Journal of Applied Polymer Science 2018; 135(31): 46536. https://doi.org/10.1002/app.46536
Botlhoko OJ, Ramontja J, Ray SS. A new insight into morphological, thermal, and mechanical properties of meltprocessed polylactide/poly(ε-caprolactone) blends. Polymer Degradation and Stability 2018; 154: 84-95. https://doi.org/10.1016/j.polymdegradstab.2018.05.025
Kelnar I, Kratochvil J, Kapralkova L, Zhigunov A, Nevoralova M. Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. Journal of the Mechanical Behaivor of Biomedical Materials 2017; 71: 271-278. https://doi.org/10.1016/j.jmbbm.2017.03.028
Urquijo J, Dagreou S, Guerrica-Echevarria G, Eguiazabal JI. Structure and properties of poly(lactic acid)/poly(ε- caprolactone) nanocomposites with kinetically induced nanoclay location. Journal of Applied Polymer Science 2016; 133(33): 43815. https://doi.org/10.1002/app.43815
Ferri JM, Fenollar O, Jorda-Vilaplana A, Garcia-Sanoguera D, Balart R. Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends. Polymer International 2016; 65(4): 453-463. https://doi.org/10.1002/pi.5079
Urquijo J, Guerrica-Echevarria G, Eguiazabal JI. Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. Journal of Applied Polymer Science 2015; 132(41): 42641. https://doi.org/10.1002/app.42641
Gustafsson G, Nishida M, Ito Y, Haggblad HA, Jonsen P, Takayama T, Todo M. Mechanical characterization and modelling of the temperature-dependent impact behaviour of a biocompatible poly(L-lactide)/poly(ε-caprolactone) polymer blend. Journal of the Mechanical Behavior of Biomedical Materials 2015; 51: 279-290. https://doi.org/10.1016/j.jmbbm.2015.07.007
Agwuncha SC, Ray SS, Jayaramudu J, Khoathane C, Sadiku R. Influence of boehmite nanoparticle loading on the mechanical, thermal, and rheological properties of biodegradable polylactide/poly(ε-caprolactone) Blends. Macromolecular materials and Engineering 2015; 300(1): 31- 47. https://doi.org/10.1002/mame.201400212
Todo M, Park SD, Takayama T, Arakawa K. Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Engineering Fracture Mechanics 2007; 74: 1872- 1883. https://doi.org/10.1016/j.engfracmech.2006.05.021