MgAl2O4:Mn2+ Red-Emitting Phosphor: Influence of MgF2 Flux on the Microstructure and Luminescence Properties

Authors

  • Shan Li School of Chemistry and Chemical Engineering, Hirano Institute for Materials Innovation, Shanghai Jiao Tong University Dongchuan Road No.800, Shanghai, 200240, P. R. China
  • Shu-Yu Zhao School of Chemistry and Chemical Engineering, Hirano Institute for Materials Innovation, Shanghai Jiao Tong University Dongchuan Road No.800, Shanghai, 200240, P. R. China
  • Tian-Nan Ye Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midoriku, Yokohama, Kanagawa 226-8503, Japan
  • Xue-Yan Wu School of Materials Science and Engineering, Hirano Institute for Materials Innovation, Shanghai Jiao Tong University Dongchuan Road No.800, Shanghai, 200240, P. R. China
  • Kai-Xue Wang School of Chemistry and Chemical Engineering, Hirano Institute for Materials Innovation, Shanghai Jiao Tong University Dongchuan Road No.800, Shanghai, 200240, P. R. China
  • Xiao Wei School of Chemistry and Chemical Engineering, Hirano Institute for Materials Innovation, Shanghai Jiao Tong University Dongchuan Road No.800, Shanghai, 200240, P. R. China
  • Jie-Sheng Chen School of Chemistry and Chemical Engineering, Hirano Institute for Materials Innovation, Shanghai Jiao Tong University Dongchuan Road No.800, Shanghai, 200240, P. R. China

DOI:

https://doi.org/10.12974/2311-8717.2017.05.01.3

Keywords:

Magnesium aluminate, Manganese doping, Red phosphor, Solid state reaction, MgF2 Flux.

Abstract

A serial of Mn ions doped MgAl2O4 phosphors, exhibiting only red light centred at 650 nm, have been prepared by a solid state reaction (SSR) with and without MgF2 flux. These phosphors have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron paramagnetic resonance (EPR) measurements. EPR result demonstrates that Mn ions exist as +2 valence. The emission intensity of the phosphors varies with Mn2+ concentration. The addition of MgF2 flux to the reactants enhances the luminescence properties through elevating the crystallinity, regulating the morphology and particle size of the MgAl2O4:Mn2+ phosphor. The phosphor MgAl2O4:0.10%Mn2+ with 12 wt% MgF2 flux shows the best emission performance. 

References

Schubert EF, Kim JK. Solid-State Light Sources Getting Smart. Science 2005; 308(5726): 1274-8. https://doi.org/10.1126/science.1108712

Li YQ, Delsing ACA, de With G, Hintzen HT. Luminescence Properties of Eu2+ -Activated Alkaline-Earth Silicon-Oxynitride MSi2 O2-δ N2+2/3 δ (M = Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors. Chem Mater 2005; 17(12): 3242-8. https://doi.org/10.1021/cm050175d

Dai Q, Foley ME, Breshike CJ, Lita A, Strouse GF. Ligand- Passivated Eu: Y2O3 Nanocrystals as a Phosphor for White Light Emitting Diodes. J Am Chem Soc 2011; 133(39): 15475-86. https://doi.org/10.1021/ja2039419

Wang M-S, Guo S-P, Li Y, Cai L-Z, Zou J-P, Xu G, et al. A Direct White-Light-Emitting Metal−Organic Framework with Tunable Yellow-to-White Photoluminescence by Variation of Excitation Light. J Am Chem Soc 2009; 131(38): 13572-3. https://doi.org/10.1021/ja903947b

Guo N, Song Y, You H, Jia G, Yang M, Liu K, et al. Optical Properties and Energy Transfer of NaCaPO4: Ce3+,Tb3+ Phosphors for Potential Application in Light-Emitting Diodes. Eur J Inorg Chem 2010; 2010(29): 4636-42. https://doi.org/10.1002/ejic.201000392

Chiu C-H, Liu C-H, Huang S-B, Chen T-M. White-Light- Emitting Diodes Using Red-Emitting LiEu(WO[sub 4])[sub 2−x](MoO[sub 4])[sub x] Phosphors. J Electrochem Soc 2007; 154(7): J181. https://doi.org/10.1149/1.2731042

Muthu S, Schuurmans FJP, Pashley MD. Red, green, and blue LEDs for white light illumination. IEEE J Sel Top Quantum Electron 2002; 8(2): 333-8. https://doi.org/10.1109/2944.999188

Bachmann V, Ronda C, Meijerink A. Temperature Quenching of Yellow Ce 3+ Luminescence in YAG: Ce. Chem Mater 2009; 21(10): 2077-84. https://doi.org/10.1021/cm8030768

Hou J, Yin X, Fang Y, Huang F, Jiang W. Novel red-emitting perovskite-type phosphor CaLa1−xMgM′O6: xEu3+ (M′ = Nb, Ta) for white LED application. Opt Mater 2012; 34(8): 1394-7. https://doi.org/10.1016/j.optmat.2012.02.031

Piao X, Machida K, Horikawa T, Hanzawa H, Shimomura Y, Kijima N. Preparation of CaAlSiN 3 : Eu 2+ Phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties. Chem Mater 2007; 19(18): 4592-9. https://doi.org/10.1021/cm070623c

Nyman M, Shea-Rohwer LE, Martin JE, Provencio P. Nano- YAG: Ce Mechanisms of Growth and Epoxy-Encapsulation. Chem Mater 2009; 21(8): 1536-42. https://doi.org/10.1021/cm803137h

Takahashi T, Adachi S. Mn4 + -Activated Red Photoluminescence in K2SiF6 Phosphor. J Electrochem Soc 2008; 155(12): E183-8.

Adachi S, Takahashi T. Direct synthesis and properties of K2SiF6: Mn4+ phosphor by wet chemical etching of Si wafer. J Appl Phys 2008; 104(2): 023512. https://doi.org/10.1063/1.2956330

Adachi S, Takahashi T. Photoluminescent properties of K2GeF6: Mn4+ red phosphor synthesized from aqueous HF/KMnO4 solution. J Appl Phys 2009; 106(1): 013516. https://doi.org/10.1063/1.3160303

Adachi S, Takahashi T. Direct Synthesis of K2SiF6 : Mn4 + Red Phosphor from Crushed Quartz Schist by Wet Chemical Etching. Electrochem Solid-State Lett 2009; 12(2): J20-3.

Arai Y, Adachi S. Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors. J Lumin 2011; 131(12): 2652-60. https://doi.org/10.1016/j.jlumin.2011.06.042

Xu YK, Adachi S. Properties of Na2SiF6: Mn4+ and Na2GeF6: Mn4+ red phosphors synthesized by wet chemical etching. J Appl Phys 2009; 105(1): 013525. https://doi.org/10.1063/1.3056375

Murata T, Tanoue T, Iwasaki M, Morinaga K, Hase T. Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED. J Lumin 2005; 114(3-4): 207-12. https://doi.org/10.1016/j.jlumin.2005.01.003

Singh V, Natarajan V, Zhu J-J. Luminescence and EPR investigations of Mn activated calcium aluminate prepared via combustion method. Opt Mater 2007; 30(3): 468-72. https://doi.org/10.1016/j.optmat.2007.01.003

Ye T, Li S, Wu X, Xu M, Wei X, Wang K, et al. Sol-gel preparation of efficient red phosphor Mg 2 TiO 4 : Mn 4+ and XAFS investigation on the substitution of Mn 4+ for Ti 4+. J Mater Chem C 2013; 1(28): 4327-33. https://doi.org/10.1039/c3tc30553h

Ye R, Jia G, Deng D, Hua Y, Cui Z, Zhao S, et al. Controllable Synthesis and Tunable Colors of α- and β-Zn 2 SiO 4 : Mn 2+ Nanocrystals for UV and Blue Chip Excited White LEDs. J Phys Chem C 2011; 115(21): 10851-8. https://doi.org/10.1021/jp2023633

Tomita A, Sato T, Tanaka K, Kawabe Y, Shirai M, Tanaka K, et al. Luminescence channels of manganese-doped spinel. J Lumin 2004; 109(1): 19-24. https://doi.org/10.1016/j.jlumin.2003.12.049

Song Y, Guo N, You H. Synthesis and Luminescent Properties of Cerium-, Terbium-, or Dysprosium-Doped Gd4Si2O7N2 Materials. Eur J Inorg Chem 2011; 2011(14): 2327-32. https://doi.org/10.1002/ejic.201001150

Yang Z, Yang G, Wang S, Tian J, Li X, Guo Q, et al. A novel green-emitting phosphor NaCaPO4: Eu2+ for white LEDs. Mater Lett 2008; 62(12-13): 1884-6. https://doi.org/10.1016/j.matlet.2007.10.030

Park YJ, Kim YJ. Blue emission properties of Eu-doped CaAl2O4 phosphors synthesized by a flux method. Mater Sci Eng B 2008; 146(1-3): 84-8. https://doi.org/10.1016/j.mseb.2007.07.048

Wang Y, Wang Z. Characterization of Y2O2S: Eu3+, Mg2+, Ti4+ Long-Lasting Phosphor Synthesized by Flux Method. J Rare Earths 2006; 24(1): 25-8. https://doi.org/10.1016/S1002-0721(06)60059-8

Zhang S, Zhuang W, Zhao C, He H, HUANG X. Influence of flux on properties of Y3Al5O12: Ce phosphor. J Chin Rare Earth Soc 2002; (06): 605-7.

Ma, L, Hu, J. G., Wan, G. J., Hu, X. F., Yan, S. R., Yu, L. G. Effect of flux on YAG: Ce phosphors prepared by solid-state reactions. Chin J Lumin 2006; 27(3): 348-52.

Nag A, Kutty TRN. Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4: Eu, Dy. J Alloys Compd 2003; 354(1-2): 221-31. https://doi.org/10.1016/S0925-8388(03)00009-4

Kottaisamy M, Jagannathan R, Rao RP, Avudaithai M, Srinivasan LK, Sundaram V. On the Formation of Flux Grown Y 2 O 2 S : Eu3 + Red Phosphor. J Electrochem Soc 1995; 142(9): 3205-9. https://doi.org/10.1149/1.2048714

Lee HJ, Kim KP, Hong GY, Yoo JS. The effect of flux materials on the physical and optical properties of Eu3+- activated yttrium oxide phosphors. J Lumin 2010 Jun; 130(6): 941-6. https://doi.org/10.1016/j.jlumin.2010.01.002

Feng Z, Zhuang W, Huang X, Wen X, Hu Y. Effect of MgF2- H3BO3 flux on the properties of (Ce,Tb)MgAl11O19 phosphor. J Rare Earths 2010; 28(3): 351-5. https://doi.org/10.1016/S1002-0721(09)60110-1

Won HI, Nersisyan HH, Won CW, Lee KH. Effect of metal halide fluxes on the microstructure and luminescence of Y3Al5O12: Ce3+ phosphors. Mater Chem Phys 2011; 129(3): 955-60. https://doi.org/10.1016/j.matchemphys.2011.05.025

Akselrud LG, Zavalii PY, Grin YN, Pecharski VK, Baumgartner B, Wölfel E. Use of the CSD Program Package for Structure Determination from Powder Data. Mater Sci Forum 1993; 133-136: 335-42. https://doi.org/10.4028/www.scientific.net/MSF.133-136.335

Guo Y, Cao X, Lan X, Zhao C, Xue X, Song Y. Solution- Based Doping of Manganese into Colloidal ZnO Nanorods. J Phys Chem C 2008; 112(24): 8832-8. https://doi.org/10.1021/jp800106v

Al P. Mechanism of concentration quenching of a xanthene dye encapsulated in phospholipid vesicles. Photochem Photobiol 1986; 44(4): 453-9. https://doi.org/10.1111/j.1751-1097.1986.tb04692.x

Singh V, Chakradhar RPS, Rao JL, Kim D-K. Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl2O4 phosphors. J Solid State Chem 2007; 180(7): 2067-74. https://doi.org/10.1016/j.jssc.2007.04.030

Zhong R, Zhang J, Wei H, Qi X, Li M, Han X. The different luminescent characteristics of MgAl2O4: Mn2+ between phosphor powder and nanoparticles. Chem Phys Lett 2011; 508(4-6): 207-9. https://doi.org/10.1016/j.cplett.2011.04.033

Dai P, Zhang X, Sun P, Yang J, Wang L, Yan S, et al. Influence of Flux on Morphology and Luminescence Properties of Phosphors: A Case Study on Y1.55Ti2O7: 0.45Eu3+. Ballato J, editor. J Am Ceram Soc 2012; 95(4): 1447-53. https://doi.org/10.1111/j.1551-2916.2012.05092.x

Shionoya, Shigeo, William M. Yen, Hajime Yamamoto. In: Phosphor Handbook. CRC press; 2006.

Chang Y-S, Huang F-M, Chen H-L, Tsai Y-Y. Effects of Na2CO3 flux addition on the structure and photoluminescence properties for Eu3+-doped YVO4 phosphor. J Phys Chem Solids 2011; 72(10): 1117-21. https://doi.org/10.1016/j.jpcs.2011.06.008

Su Y-K, Peng Y-M, Yang R-Y, Chen J-L. Effects of NaCl flux on microstructure and luminescent characteristics of KSrPO4: Eu2+ phosphors. Opt Mater 2012; 34(9): 1598-602. https://doi.org/10.1016/j.optmat.2012.03.019

Downloads

Published

2017-02-27

How to Cite

Li, S., Zhao, S.-Y., Ye, T.-N., Wu, X.-Y., Wang, K.-X., Wei, X., & Chen, J.-S. (2017). MgAl2O4:Mn2+ Red-Emitting Phosphor: Influence of MgF2 Flux on the Microstructure and Luminescence Properties. Journal of Composites and Biodegradable Polymers, 5(1), 17–25. https://doi.org/10.12974/2311-8717.2017.05.01.3

Issue

Section

Articles