Realizing the Ideal Structure for Hybrid Photovoltaics by Directly Electrochemical Polymerizing Thiophene between ZnO Nanorods

Authors

  • Fei Wang Beijing Institute of Spacecraft System Engineering, 100094, China
  • Zhigang Liu Beijing Institute of Spacecraft System Engineering, 100094, China
  • Xiaofeng Zhang Beijing Institute of Spacecraft System Engineering, 100094, China
  • Wenjia Zhang Beijing Institute of Spacecraft System Engineering, 100094, China
  • Weifeng Guo Beijing Institute of Spacecraft System Engineering, 100094, China
  • Wenli Lin Beijing Institute of Spacecraft System Engineering, 100094, China
  • Qi Chen Beijing Institute of Spacecraft System Engineering, 100094, China
  • Zhijian Chen State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871, China

DOI:

https://doi.org/10.12974/2311-8717.2017.05.01.2

Keywords:

Organic photovoltaics, ideal structure, ZnO nanorods, electrochemical polymerization.

Abstract

A method to realize the ideal structure for Organic Photovoltaics (OPVs) was reported. Vertical aligned zinc oxide (ZnO) nanorods were hydro thermally grown on ITO or ITO/Poly(thiophene) (PTH) substrates as electron acceptor, and PTH was directly electrochemically polymerized between the ZnO nanorods as the electron donor. The interdigital structure between two semiconductors shall help the charge carriers to diffuse to electrodes much easier compared with disordered structures. Scanning Electron Microscope (SEM) was used to verify the nearly 100% inserting of PTH into the ZnO nanorods gaps. The method may define a new way to obtain other ideal structures and improve the performance of organic solar cells. 

References

Agrawal N, Ansari Mohd Z, Majumdar A, Gahlot R and Khare N. Sol Energy Mat Sol Cells 2016; 157: 960-965. https://doi.org/10.1016/j.solmat.2016.07.040

Chao Y, Chuang C, Hsu H. Sol Energy Mat Sol Cells 2016; 157: 666-675. https://doi.org/10.1016/j.solmat.2016.07.041

Keru G, Ndungu PG, Nyamori VO. Int J Energy Res 2014; 38: 1635-1653. https://doi.org/10.1002/er.3194

Goldschmidt JC and Fischer S. Adv Opt Mater 2015; 3: 510-535. https://doi.org/10.1002/adom.201500024

Kulshreshtha C, Choi JW, Kim J, Jeon WS, Suh MC, Park Y, et al. Appl Phys Lett 2011; 99: 023308. https://doi.org/10.1063/1.3610962

Tang CW. Appl Phys Lett 1986; 48: 183-185. https://doi.org/10.1063/1.96937

Saito G and Yoshida Y. Bull Chem Soc Jpn 2007; 80: 1-137. https://doi.org/10.1246/bcsj.80.1

Winder C and Sariciftci NS. J Mater Chem 2004; 14: 1077- 1086. https://doi.org/10.1039/b306630d

Ma W, Yang C, Gong X, Lee K and Heeger AJ. Adv Funct Mater 2005; 15: 1617-1622. https://doi.org/10.1002/adfm.200500211

Yu G, Gao J, Hummelen JC, Wudl F and Heeger AJ. Science 1995; 270: 1789-1791. https://doi.org/10.1126/science.270.5243.1789

Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heegrer AJ, et al. Nat Mater 2007; 6: 497-500. https://doi.org/10.1038/nmat1928

Günes S, Neugebauer H and Sariciftci NS. Chem Rev 2007; 107: 1324-1338. https://doi.org/10.1021/cr050149z

Qin Y, Wang X and Wang Z. Nature 2008; 451: 809-814. https://doi.org/10.1038/nature06601

Shu Q, Wei J, Wang K, Zhu H, Li Z, Jia Yi, et al. Nano Lett 2009, 9, 4338-4342. https://doi.org/10.1021/nl902581k

Huynh WU, Dittmer JJ and Alivisatos AP. Science 2002; 295: 2425-2427. https://doi.org/10.1126/science.1069156

Xu C, Wang X, Lin Wang Z. J Am Chem Soc 2009; 131: 5866-5872. https://doi.org/10.1021/ja810158x

Oosterhout SD, Koster LJA, Bavel SSV, Loos J, Stenzel O, Thiedmann R, et al. Adv Energy Mater 2011; 1: 90-96. https://doi.org/10.1002/aenm.201000022

Wu J and Liu S. Adv Mater 2002; 14: 215-218. https://doi.org/10.1002/1521-4095(20020205)14:3<215::AIDADMA215> 3.0.CO;2-J

Law M, Greene LE, Johnson JC, Saykally R and Yang P. Nat Mater 2005; 4: 455-459. https://doi.org/10.1038/nmat1387

Bartholomew GP and Heeger AJ. Adv Funct Mater 2005; 15: 677-682. https://doi.org/10.1002/adfm.200400277

Fan B, Wang P, Wang L and Shi G. Sol Energy Mat Sol Cells 2006; 90: 3547-3556. https://doi.org/10.1016/j.solmat.2006.06.042

Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, et al Adv Mater 2006; 18: 789-794. https://doi.org/10.1002/adma.200501717

Potscavage WJ, Sharma JRA and Kippelen B. Accounts Chem Res 2009; 42: 1758-1767. https://doi.org/10.1021/ar900139v

Treat ND, Campos LM, Dimitriou MD, Ma B, Chabinyc ML, Hawker CJ. Adv Mater 2010; 22: 4982-4986. https://doi.org/10.1002/adma.201001967

Braun S, Salaneck WR and Fahlman M. Adv Mater 2009; 21: 1450-1472. https://doi.org/10.1002/adma.200802893

Steim R, Kogler FR and Brabec CJ. J Mater Chem 2010; 20: 2499-2512. https://doi.org/10.1039/b921624c

Krüger J, Plass R, Cevey L, Piccirelli M and Grätzel M. Appl Phys Lett 2001; 79: 2085-2087. https://doi.org/10.1063/1.1406148

Conings B, Baeten L, Boyen HG, Spoltore D, D'Haen J and Grieten L. J Phys Chem C 2011; 115: 16695-16700. https://doi.org/10.1021/jp203699h

Downloads

Published

2017-02-27

How to Cite

Wang, F., Liu, Z., Zhang, X., Zhang, W., Guo, W., Lin, W., Chen, Q., & Chen, Z. (2017). Realizing the Ideal Structure for Hybrid Photovoltaics by Directly Electrochemical Polymerizing Thiophene between ZnO Nanorods. Journal of Composites and Biodegradable Polymers, 5(1), 10–16. https://doi.org/10.12974/2311-8717.2017.05.01.2

Issue

Section

Articles