Effect of Magnetic Field on Rheological Properties of Cellulose Ether Solutions
DOI:
https://doi.org/10.12974/2311-8717.2014.02.01.4Keywords:
Liquid crystal, phase transition, solution viscosity, cellulose ethers.Abstract
Application of a magnetic field is shown to be accompanied by an increase in the viscosity of hydroxyethyl cellulose, ethyl cellulose solutions and sodiumcarboxymethyl cellulose solutions in 2 - 4 times. The concentration dependences of solution viscosity in the presence of a magnetic field are described by curves with maxima.
References
Vshivkov SA, Rusinova EV. Liquid crystal phase transitions and rheological properties of cellulose ethers. Russian Journal of Applied Chemistry 2011; 84(10): 1830-1835. http://dx.doi.org/10.1134/S1070427211100260
Vshivkov SA. Phase transitions of polymer systems in external fields. St Petersburg: Lan 2013
[in Russian].
Vshivkov SA, Rusinova EV, Galyas AG. Effect of a magnetic field on the rheological properties of cellulose ether solutions. Polymer Sci 2012; 54(11 Ser A): 827-832.
Vshivkov SA, Byzov AA. Phase equilibrium, structure, and rheological properties of the carboxymethyl cellulose-water system. Polymer Sci 2013; 55(2 Ser A): 102-106.
Yang JT. Non-newtonian viscosity of poly-????-benzyl-Lglutamate solutions. J Am Chem Soc 1958; 80(8): 1783- 1788. http://dx.doi.org/10.1021/ja01541a002
Yang JT. Factors affecting the non-newtonian viscosity of rigid particles. J Am Chem Soc 1959; 81(15): 3902-3907. http://dx.doi.org/10.1021/ja01524a024
Hermans JJr. The viscosity of concentrated solutions of rigid rodlike molecules (poly-????-benzyl-l-glutamate in m-cresol). J Colloid Sci 1962; 17(7): 638-648. http://dx.doi.org/10.1016/0095-8522(62)90028-4
Kulichikhin VG, Golova LK. Liquid crystal state of cellulose and its derivatives. Khim Drev 1985; (3): 9-27.
Vshivkov SA, Rusinova EV. Effect of magnetic field on phase transitions in solutions of cellulose derivatives. Polymer Sci 2008; 50(7 Ser A): 725-732.
Vshivkov SA, Galyas AG, Kutsenko LI, Tyukova IS, Terziyan TV, Shepetun AV. Self-Organization of Macromolecules and Liquid-Crystalline Phase Transitions in Solutions of Cellulose Esters. Polymer Sci 2011; 53(1 Ser A): 1-5.
Vshivkov SA, Galyas AG. Mechanism of Self-Assembly of Rigid-Chain Macromolecules of Cellulose Ethers in Solutions. Polymer Sci 2011; 53(11 Ser A): 1032-1039.
Vshivkov SA. Effect of magnetic and mechanical fields on phase liquid crystalline transitions in solutions of cellulose derivatives. In: Moreno-Piraján JK, Ed. Thermodynamics. Physical chemistry of aqueous systems. Croatia: In Tech 2011; pp. 407-434.
Vshivkov SA, Rusinova EV, Kudrevatykh NV, Galyas AG, Alekseeva MS, Kuznetsov DK. Phase transitions of hydroxypropylcellulose liquid-crystalline solutions in magnetic field. Polymer Sci 2006; 48(10 Ser A): 1115-1119.
Vshivkov SA, Rusinova EV, Kutsenko LI, Galyas AG. Phase transitions in liquid-crystalline cyanoethyl cellulose solutions in magnetic field. Polymer Sci 2007; 49(7-8 Ser B): 200-202.
Malkin AYa, Isaev AI. Rheology: conceptions, methods, applications. St Petersburg: Professiya 2007
[in Russian].
Kitaev EV, Grevtsev NF. Course of general electric engineering. Moscow: Sovetskaya Nauka 1945
[in Russian].
Kulichikhin VG, Platonov VA, Kogan EG, Mil’kova LP, Andreeva IN, Lukasheva NV, et al. Transitions in anisotropic solutions of poly-p-phenyleneterephthalamide. Vysokomol Soedin 1978; 20(10 Ser A): 2224-2231.
Papkov SP, Kulichihin VG, Kalmykova VD, Malkin AYa. Rheological properties of anisotropic poly(para-benzamide) solutions. J Polym Sci Polym Phys Ed 1974; 12: 1753-1770. http://dx.doi.org/10.1002/pol.1974.180120903
Miller WG, Wu CC, Wee EL, Santee GL, Rai JH, Goebel KD. Thermodynamics and dynamics of polypeptide liquid crystals. Pure Appl Chem 1974; 38(1): 37-58.