Preparation and Characterization of Cellulose/Montmorillonite Hybrid Membranes

Authors

  • Fethia Moulahcene-Abdelli Laboratoire De Traitement Et Mise En Forme Des Polymères Fibreux, F.S.I., M’Hamed Bougara University, Boumerdess, 35000, Algeria
  • Djamel Aliouche Laboratoire De Traitement Et Mise En Forme Des Polymères Fibreux, F.S.I., M’Hamed Bougara University, Boumerdess, 35000, Algeria

DOI:

https://doi.org/10.12974/2311-8717.2015.03.01.1

Keywords:

Cellulose, montmorillonite, composite membrane, solution intercalation, thermal stability.

Abstract

The compounding of cellulose and inorganic Montmorillonite (MMT) on microscale molecular level has high potential to greatly improve the thermal stability, decay resistance and other properties of cellulose fibres. Pristine Algerian MMT was first sodium modified as Na-MMT, then organically modified as organophilic OMMT by using Octadecylamine. With OMMT and fibrous cellulose from waste cotton, cellulose/MMT composites were prepared via incorporation from solution process and characterized by XRD, FTIR and TGA. Dimethyl Acetamide/Lithium Chloride (DMAc/LiCl) solvent system was used for dispersing cellulose and clay. Results show that the preparation of OMMT was very successful; the X-ray diffraction results revealed that the interlayer spacing (2.17nm) for OMMT was increased compared with that (1.24nm) for Na-MMT. The composites exhibit higher thermal stability; addition of OMMT can considerably increase the decomposition temperature of cellulose matrix. An increase in thermal stability with clay content was observed by thermal analysis. 

References

Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci 2008; 33: 1119- 1198. http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008

Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R 2006; 53: 73-197. http://dx.doi.org/10.1016/j.mser.2006.06.001

LeBaron PC, Wang Z and Pinnavaia TJ. Polymer-layered silicate nanocomposites: An overview Appl Clay Sci 1999; 15: 11-29. http://dx.doi.org/10.1016/S0169-1317(99)00017-4

Chivrac F, Pollet E and Averous L. Progress in nanobiocomposites based on polysaccharides and nanoclays. Mater Sci Eng R 2009; 67: 1-17. http://dx.doi.org/10.1016/j.mser.2009.09.002

Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 2000; 28: 1-63. http://dx.doi.org/10.1016/S0927-796X(00)00012-7

Ray SS and Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 2003; 28: 1539-1641. http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002

White LA. Preparation and thermal analysis of cotton-clay nanocomposites. J Appl Polym Sci 2004; 92: 2125-2131. http://dx.doi.org/10.1002/app.20159

Zhu J, Morgan AB, Lamelas FJ and Wilkie CA. Fire Properties of polystyrene-clay nanocomposites. Chem Mater 2001; 13: 3774-3780. http://dx.doi.org/10.1021/cm000984r

Bourbigot S, Gilman JW and Wilkie CA. Kinetic analysis of the thermal degradation of polystyrene-montmorillonite nanocomposite. Polym Degrad Stab 2004; 84: 483-492. http://dx.doi.org/10.1016/j.polymdegradstab.2004.01.006

Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Gannelis EP. Flammability properties of polymer-layered silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 2000; 12: 1866-1873. http://dx.doi.org/10.1021/cm0001760

Zhu J, Uhl FM, Morgan AB and Wilkie CA. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater 2001; 13: 4649- 4654. http://dx.doi.org/10.1021/cm010451y

Zhao CG, Qin HL, Gong FL, Feng M, Zhang SM and Yang MS. Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 2005; 87: 183-189. http://dx.doi.org/10.1016/j.polymdegradstab.2004.08.005

Qin HL, Zhang SM, Zhao CG, Hu G and Yang MS. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polym 2005; 46: 8386-8395. http://dx.doi.org/10.1016/j.polymer.2005.07.019

Aranda P and Ruiz- Hitzky E. Poly(ethylene oxide)-silicate intercalation materials Chem Mater 1992; 4: 1395-1403. http://dx.doi.org/10.1021/cm00024a048

Greenland DJ. Adsorption of poly(vinyl alcohols) by montmorillonite. J Colloid Sci 1963 18: 647-664. http://dx.doi.org/10.1016/0095-8522(63)90058-8

Krishnamoorti R, Vaia RA and Giannelis EP. Structure and dynamics of polymer layered silicate nanocomposites. Chem Mater 1996; 8: 1728-1734. http://dx.doi.org/10.1021/cm960127g

Bledzki AK and Gassan J. Composites reinforced with cellulose-based fibres. Prog Polym Sci 1999; 24: 221-274. http://dx.doi.org/10.1016/S0079-6700(98)00018-5

Delhom CD, White-Ghoorahoo LA and Pang SS. Development and characterization of cellulose/clay nanocomposites. Comp Part B 2010; 41: 475-481. http://dx.doi.org/10.1016/j.compositesb.2009.10.007

Cerruti P, Ambrogi V, Postiglione A, Rychly´ J, Matisova´- Rychla´ L and Carfagna C. Morphological and thermal properties of cellulose-montmorillonite nanocomposites. Biomacromolecules 2008; 9: 3004-3013. http://dx.doi.org/10.1021/bm8002946

Moon R, Martine A, Nairn J, Simonsen J and Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011; 40: 3941-3994. http://dx.doi.org/10.1039/c0cs00108b

Heinze T, Liebert TF, Pfeiffer KS and Hussain MA. Unconventional cellulose esters: synthesis, characterization and structure-property relations, Cellulose 2003; 10: 283- 296. http://dx.doi.org/10.1023/A:1025117327970

Vaia RA, Vasudevan S, Krawiec W, Scanlon LG and Giannelis EP. New polymer electrolyte nanocomposites: melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv Mater 1995; 7: 154-156. http://dx.doi.org/10.1002/adma.19950070210

Vaia RA, Teukolsky RK and Giannelis EP. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater 1994; 6: 1017-1022. http://dx.doi.org/10.1021/cm00043a025

Tyagi B, Chudasama CD and Jasra RV. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta Molec Biomolec Spec 2006; 64: 273-278. http://dx.doi.org/10.1016/j.saa.2005.07.018

Madejova J. FTIR techniques in clay mineral studies. Vibrat Spec 2003; 31: 1-10. http://dx.doi.org/10.1016/S0924-2031(02)00065-6

Dawsey TR and McCormick CL. The lithium chloride/dimethylacetamide solvent for cellulose. Macrom Chem Phys Rev 1990; C30: 405-440. http://dx.doi.org/10.1080/07366579008050914

Suh DJ, Lim YT and Park OO. The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods. Polym 2000; 41: 8557-8563. http://dx.doi.org/10.1016/S0032-3861(00)00216-0

Gilman JW and Kashiwagi T. Polymer-layered silicate nanocomposites with conventional flame retardants, In: Polymer-Clay Nanocomposites, eds. Pinnavaia TJ and Beall GW, Wiley, New York 2000; 193-206.

Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH and Raghavan SR. Polym 2004; 45: 881-891. http://dx.doi.org/10.1016/j.polymer.2003.11.036

Downloads

Published

2015-03-24

How to Cite

Moulahcene-Abdelli, F. ., & Aliouche, D. (2015). Preparation and Characterization of Cellulose/Montmorillonite Hybrid Membranes. Journal of Composites and Biodegradable Polymers, 3(1), 2–9. https://doi.org/10.12974/2311-8717.2015.03.01.1

Issue

Section

Articles