Design and Sustained Release Evaluation of Rifampicin from Polyurethane Membranes 

Authors

  • Mihaela Mandru “Gheorghe Asachi” Technical University, Faculty of Chemical Engineering and Environmental Protection, 71 Dimitrie Mangeron Street, 700050, Iasi, Romania and University of Rouen UMR 6270 CNRS, Polymers, Biopolymers, Surfaces, 76821 Mont Saint Aignan Cedex, France
  • Constantin Ciobanu “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
  • Laurent Lebrun University of Rouen UMR 6270 CNRS, Polymers, Biopolymers, Surfaces, 76821 Mont Saint Aignan Cedex, France
  • Alexandra Nistor “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
  • Luiza Madalina Gradinaru “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
  • Marcel Popa “Gheorghe Asachi” Technical University, Faculty of Chemical Engineering and Environmental Protection, 71 Dimitrie Mangeron Street, 700050, Iasi, Romania
  • Stelian Vlad “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania

DOI:

https://doi.org/10.12974/2311-8717.2013.01.01.5

Keywords:

Biological test, drug delivery, in vitro, polyurethane membranes, rifampicin, sustained release.

Abstract

Drug delivery membranes based on polyurethanes have been used for prolonged release of rifampicin. Therefore, two polyurethane structures with concentrations in urethane groups of 1.5 mmol/g and 2.5 mmol/g, respectively were tested for delivery of rifampicin. The influence of the surface morphology in drug release was evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurements. The kinetics, drug release mechanisms and dynamic vapour sorption (DVS) were studied. Prolonged nature of the release of rifampicin is assured by the urethane concentration 2.5 mmol/g but also to the surface of the membrane systems. It was found that the rifampicin release is function of polymer-drug membranes composition and the surface properties. One can assume that the mechanism of diffusion is Fickian, and the experimental data verify this law. Finally, the possibility of applications of the polyurethane matrix with rifampicin was shown by biological test. 

References

Rao B, Murthy K. Studies on rifampicin release from ethylcellulose coated nonpareil beads. Int J Pharmac 2002; 231(1): 97-106. http://dx.doi.org/10.1016/S0378-5173(01)00874-2

Mandru M, Ciobanu C, Ignat M, Popa M, Verestiuc L, Vlad S. Sustained release of nystatin from polyurethane membranes for biomedical applications. Digest J Nanomater Biostruct 2011; 6(3): 1227-38.

Mândru M, Vlad S, Ciobanu C, Lebrun L, Popa M. Polyurethane-hydroxypropyl cellulose membranes for sustained release of nystatin. Cellulose Chem Technol 2013; 47(1-2): 5-12.

Mândru M, Ciobanu C, Vlad S, Butnaru M, Lebrun L, Popa M. Characteristics of polyurethane-based sustained release membranes for drug delivery. Cent Eur J Chem 2013; 11(4): 542-553. http://dx.doi.org/10.2478/s11532-012-0187-y

Krusic M, Ilic M, Filipovic J. Swelling behaviour and paracetamol release from poly(N-isopropylacrylamideitaconic acid) hydrogels. Polym Bull 2009; 63(2): 197-211. http://dx.doi.org/10.1007/s00289-009-0086-3

Zhan X, Chen S, Tang G, Mao Z. A new copolymer membrane cured by 2-hydroxy-3-phenoxypropylacrylate, 4- hydroxybutyl acrylate, and isobutyl methacrylate controlled clonidine linear release in the transdermal drug delivery system. Polymr Adv Technol 2007; 18(5): 392-6. http://dx.doi.org/10.1002/pat.901

Cardea S, Sessa M, Reverchon E. Supercritical phase inversion to form drug-loaded poly(vinylidene fluoride-cohexafluoropropylene) membranes. Indus Eng Chem Res 2010; 49(6): 2783-9. http://dx.doi.org/10.1021/ie901616n

Pennings A, Knol K, Hoppen J, Leenslag J, van der Lei B. A two-ply artificial blood vessel of polyurethane and poly(Llactide). Coll Polym Sci 1990; 268: 2-11. http://dx.doi.org/10.1007/BF01410416

Jabbari E, Khakpour M. Morphology of and release behavior from porous polyurethane microspheres. Biomaterials 2000; 21(20): 2073-9. http://dx.doi.org/10.1016/S0142-9612(00)00135-6

Oprea S, Vlad S. Evaluation of physico-mechanical properties of precipitated polyurethane films in medium of free radical agents. Eur Polym J 2002; 38(7): 1465-70. http://dx.doi.org/10.1016/S0014-3057(02)00003-4

Vlad S. Influence of the hard segment contents on mechanical behavior of some poly(ether-urethane-urea)s. Mater Plast 2005; 42(1): 63-7.

Ciobanu C, Han X, Cascaval C, Guo F, Rosu D, Ignat L, et al. Influence of urethane group on properties of crosslinked polyurethane elastomers. J Appl Polym Sci 2003; 87(11): 1858-67. http://dx.doi.org/10.1002/app.11509

Ruggeri V, Francolini I, Donelli G, Piozzi A. Synthesis, characterization, and in vitro activity of antibiotic releasing polyurethanes to prevent bacterial resistance. J Biomed Mater Res Part A 2007; 81A(2): 287-98. http://dx.doi.org/10.1002/jbm.a.30984

Vlad S, Oprea S. Effect of polyols on the physico-mechanical properties of some polyurethanes. J Optoelectr Adv Mater 2007; 9(4): 994-9.

Schierholz J, Steinhauser H, Rump A, Berkels R, Pulverer G. Controlled release of antibiotics from biomedical polyurethanes: Morphological and structural features. Biomaterials 1997; 18(12): 839-44. http://dx.doi.org/10.1016/S0142-9612(96)00199-8

Sung K, Han R, Hu O, Hsu L, Controlled release of nalbuphine prodrugs from biodegradable polymeric matrices: influence of prodrug hydrophilicity and polymer composition. Int J Pharmac1998; 172: 17-25. http://dx.doi.org/10.1016/S0378-5173(98)00156-2

DesNoyer J, McHugh A. The effect of Pluronic on the protein release kinetics of an injectable drug delivery system. J Controll Release 2003; 86(1): 15-24. http://dx.doi.org/10.1016/S0168-3659(02)00293-6

Kim J, Kim S, Lee S, Lee C, Kim D. The effect of pore formers on the controlled release of cefadroxil from a polyurethane matrix. Int J Pharmac 2000; 201(1): 29-36. http://dx.doi.org/10.1016/S0378-5173(00)00388-4

Paun I, Moldovan A, Luculescu C, Dinescu M. Biocompatible polymeric implants for controlled drug delivery produced by MAPLE. Appl Surf Sci 2011; 257(24): 10780-8. http://dx.doi.org/10.1016/j.apsusc.2011.07.097

Basak P, Adhikari B, Banerjee I, Maiti T. Sustained release of antibiotic from polyurethane coated implant materials. J Mater Sci-Mater Med 2009; 20: 213-21. http://dx.doi.org/10.1007/s10856-008-3521-3

Otto D, Vosloo H, Liebenberg W, de Villiers M. Development of microporous drug-releasing films cast from artificial nanosized latexes of poly(styrene-co-methyl methacrylate) or poly(styrene-co-ethyl methacrylate). Eur J Pharmac Biopharmac 2008; 69(3): 1121-34. http://dx.doi.org/10.1016/j.ejpb.2008.02.004

Melnig V, Apostu M, Tura V, Ciobanu C. Optimization of polyurethane membranes - Morphology and structure studies. J Membr Sci 2005; 267(1-2): 58-67. http://dx.doi.org/10.1016/j.memsci.2005.04.054

IUPAC Compedium of Chemical Terminology 2nd Edition 1997.

Raval A, Parikh J, Engineer C. Dexamethasone eluting biodegradable polymeric matrix coated stent for intravascular drug delivery. Chem Eng Res Design 2010; 88(11A): 1479- 84. http://dx.doi.org/10.1016/j.cherd.2010.03.007

Janik H, Palys B, Petrovic Z. Multiphase-separated polyurethanes studied by micro-Raman spectroscopy. Macromol Rapid Commun 2003; 24(3): 265-8. http://dx.doi.org/10.1002/marc.200390039

Senich G, MacKnight W. Fourier transform infrared thermal analysis of a segmented polyurethane. Macromolecules 1980; 13: 106-10. http://dx.doi.org/10.1021/ma60073a021

Jones D, McCoy C, Andrews G. Physicochemical and drug diffusion analysis of rifampicin containing polyethylene glycol-poly(epsilon-caprolactone) networks designed for medical device applications. Chem Eng J 2011; 172(2-3): 1088-95. http://dx.doi.org/10.1016/j.cej.2011.05.024

Agrawal S, Ashokraj Y, Bharatam P, Pillai O, Panchagnula R. Solid-state characterization of rifampicin samples and its biopharmaceutic relevance. Eur J Pharmac Sci 2004; 22(2- 3): 127-44. http://dx.doi.org/10.1016/j.ejps.2004.02.011

Stonadge P, Benham M, Ross D, Manwaring C, Harris I. The measurement of concentration dependent diffusion coefficients in the solid-solution alloys Pd-Y. Z. Phys Chem 1993; 181: S125-31. http://dx.doi.org/10.1524/zpch.1993.181.Part_1_2.125

Wong E, Rajoo R. Moisture absorption and diffusion characterisation of packaging materials - advanced treatment. Microelectr Reliab 2003; 43(12): 2087-96. http://dx.doi.org/10.1016/S0026-2714(03)00378-0

Crank J. The mathematics of diffusion, 2nd ed. New York: Oxford Clarendon Press 1975.

Vlad S, Butnaru M, Filip D, Macocinschi D, Nistor A, Gradinaru L, et al. Polyetherurethane membranes modified with renewable resource as a potential candidate for biomedical applications. Digest J Nanomater Biostruct 2010; 5(4): 1089-100.

Stamm M. Polymer surfaces and interfaces. Characterization, modification and applications. England: Springer 2008. http://dx.doi.org/10.1007/978-3-540-73865-7

Zia K, Barikani M, Zuber M, Bhatti I, Barmar M. Surface characteristics of polyurethane elastomers based on chitin/1,4-butane diol blends. Int J Biol Macromol 2009; 44(2): 182-5. http://dx.doi.org/10.1016/j.ijbiomac.2008.12.004

Park J, Lee K, Kwon I, Bae Y. PDMS-based polyurethanes with MPEG grafts: Mechanical properties, bacterial repellency, and release behavior of rifampicin. J Biomater Sci-Polym Ed 2001; 12(6): 629-45. http://dx.doi.org/10.1163/156856201316883458

Alves P, Coelho J, Haack J, Rota A, Bruinink A, Gil M. Surface modification and characterization of thermoplastic polyurethane. Eur Polym J 2009; 45(5): 1412-9. http://dx.doi.org/10.1016/j.eurpolymj.2009.02.011

Berg M, Zhai L, Cohen R, Rubner M. Controlled drug release from porous polyelectrolyte multilayers. Biomacromolecules 2006; 7(1): 357-64. http://dx.doi.org/10.1021/bm050174e

van de Belt H, Neut D, Uges D, Schenk W, van Horn J, van der Mei H, et al. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials 2000; 21(19): 1981-7. http://dx.doi.org/10.1016/S0142-9612(00)00082-X

Lefebvre M, Jacqueline C, Amador G, Le Mabecque V, Miegeville A, Potel G, et al. Efficacy of daptomycin combined with rifampicin for the treatment of experimental meticillinresistant Staphylococcus aureus (MRSA) acute osteomyelitis. Int J Antimicrob Agents 2010; 36(6): 542-4. http://dx.doi.org/10.1016/j.ijantimicag.2010.07.008

Boelens J, Zaat S, Meeldijk J, Dankert J. Subcutaneous abscess formation around catheters induced by viable and nonviable Staphylococcus epidermidis as well as by small amounts of bacterial cell wall components. J Biomed Mater Res 2000; 50(4): 546-56. http://dx.doi.org/10.1002/(SICI)1097- 4636(20000615)50:4<546::AID-JBM10>3.0.CO;2-Y

McDonald P, Lyons J, Geever L, Higginbotham C. In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(epsiloncaprolactone). J Mater Sci 2010; 45(5): 1284-92. http://dx.doi.org/10.1007/s10853-009-4080-9

Esmaeili F, Hosseini-Nasr M, Rad-Malekshahi M, Samadi N, Atyabi F, Dinarvand R. Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomed-Nanotechnol Biol Med 2007; 3(2): 161-7. http://dx.doi.org/10.1016/j.nano.2007.03.003

Downloads

Published

2013-04-04

How to Cite

Mandru, M., Ciobanu, C., Lebrun, L., Nistor, A., Gradinaru, L. M., Popa, M., & Vlad, S. (2013). Design and Sustained Release Evaluation of Rifampicin from Polyurethane Membranes . Journal of Composites and Biodegradable Polymers, 1(1), 34–46. https://doi.org/10.12974/2311-8717.2013.01.01.5

Issue

Section

Articles